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a b s t r a c t 

This paper presents a family of methods for locating/fitting hyperplanes with respect to a given set of 

points. We introduce a general framework for a family of aggregation criteria, based on ordered weighted 

operators, of different distance-based errors. The most popular methods found in the specialized liter- 

ature, namely least sum of squares, least absolute deviation, least quantile of squares or least trimmed 

sum of squares among many others, can be cast within this family as particular choices of the errors and 

the aggregation criteria. Unified mathematical programming formulations for these methods are provided 

and some interesting cases are analyzed. The most general setting give rise to mixed integer nonlinear 

programming problems. For those situations we present inner and outer linear approximations to as- 

sess tractable solution procedures. It is also proposed a new goodness of fitting index which extends the 

classical coefficient of determination and allows one to compare different fitting hyperplanes. A series of 

illustrative examples and extensive computational experiments implemented in R are provided to show 

the applicability of the proposed methods. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

R  

r  

t  

m  

f  

c  

s  

�  

t  

f  

e  

s  

a  

C  

1

 

u  
1. Introduction 

The problem of locating hyperplanes with respect to a given set

of point is well-known in Location Analysis (LA) Schöbel (1999) .

This problem is closely related to another common question in

Data Analysis (DA): to study the behavior of a given set of data

with respect to a fitting body expressed with an equation of the

form f (x ) = 0 , with x = (X 1 , . . . , X d ) ∈ R 

d . This last problem re-

duces to the estimation of the ‘best’ function f that expresses the

relationship between the data or, in the jargon of LA, to the loca-

tion of the surface f (x ) = 0 that minimizes some aggregation func-

tion of the distances to these points (see Amaldi et al., 2016; Diaz-

Báñez et al., 2004; Drezner et al., 2002 ). In many cases the family

of functions where f belongs to is fixed and then, the parameters

defining such an optimal function must be determined. The fam-

ily of linear functions is the most widely used. This implies that

the above equation is of the form f (x ) = β0 + 

∑ d 
k =1 βk X k = 0 for

β0 , β1 , . . . , βd ∈ R . 

To perform such a fitting, we are given a set of points

{ x , . . . , x n } ⊂ R 

d , and the goal is to find the vector ˆ β =
1 
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( ̂  β0 , 
ˆ β1 , . . . , 

ˆ βd ) that minimizes some measure of the deviation of

he data with respect to the hyperplane it induces, H( ̂  β) = { z ∈
 

d : ˆ β0 + 

∑ d 
k =1 

ˆ βk z k = 0 } . For a given point x ∈ R 

d , we define the

esidual with respect to a generic x as a mapping ε x : R 

d+1 → R + ,
hat maps any set of coefficients β = (β0 , . . . , βd ) ∈ R 

d+1 , into a

easure εx ( β) that represents the deviation of the given point x

rom the hyperplane with those parameters. The problem of lo-

ating a hyperplane for a given set of points { x 1 , . . . , x n } ⊆ R 

d con-

ists of finding the coefficients minimizing an aggregation function,

: R 

n → R , of the residuals of all the points. Different choices for

he residuals and the aggregation criteria will give, in general, dif-

erent optimal values for the parameters and thus different prop-

rties for the resulting hyperplanes. This problem is not new and

ome of these criteria, as the minisum, minimax and some other

lternatives, have been widely analyzed from a LA perspective (see

arrizosa and Plastria, 1995; Megiddo and Tamir, 1983; Schöbel,

996; Schöbel, 1997; Schöbel, 1998; Schöbel, 1999 , among other). 

A first approach to locate a hyperplane is to consider that resid-

als, with respect to given points, are individual measures of error

nd thus, each residual should be minimized independently of the

emaining ( Carrizosa et al., 1995; Narula and Wellington, 2007 ). It

s clear that this simultaneous minimization will not be possible

n most of the cases and then several strategies can be followed:

ne can try to find the set of Pareto fitting curves ( Carrizosa et al.,

https://doi.org/10.1016/j.cor.2018.03.009
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995 ) or alternatively, to apply an aggregation function that incor-

orates the holistic preference of the Decision-Maker on the dif-

erent residuals ( Yager and Beliakov, 2010 ). This last choice is very

ifficult and it is usual to apply an approach of complete uncer-

ainty (i.e., it is assumed that it is known the set of possible out-

omes, but there is no information about the probabilities of those

utcomes or about their likelihood ranking) leading to additive ag-

regations. 

The most popular methods to compute the coefficients of an

ptimal hyperplane consider that the residuals are the differences

rom one of the coordinates of the space (which are usually known

s vertical/horizontal distances). In this paper we present a frame-

ork that generalizes previous contributions for optimally locat-

ng/fitting hyperplanes to a set of points. It introduces a family of

ombinations residuals-criteria that allows for a great flexibility to

ccommodate hyperplanes to a set of points ( Marín et al., 2009;

ickel and Puerto, 2005 ). One of the contributions of our proposal

s the use of modern mathematical programming tools to solve the

roblems which are involved in the computation of the parameters

f the fitting models. In addition, it can be combined with some

f the mathematical programming techniques for feature selec-

ion ( Bertsimas and Mazumder, 2014 ), with classification schemes

 Bertsimas and Shioda, 2007 ), or with constraints on the coeffi-

ients of the linear manifold. This unified framework is also able to

ccommodate general forms of regularization, as upper bound on

he � 2 -norm of the coefficients ( Hoerl and Kennard, 1988 ), since it

ould only mean to add additional constraints to the mathemati-

al programming formulations proposed in the paper, at the price

f increasing the computational complexity needed for solving the

roblems. Many of the formulations described in this paper have

een implemented in R in order to be available for data analysts. 

In our framework, errors are measured as shortest distances,

ased on a norm, between the given points and the fitting surface.

his makes the location problem geometrically invariant which is

n interesting advance with respect to vertical/horizontal residuals.

e observe that this framework subsumes as particular cases the

tandard location methods that consider residuals based on verti-

al distances (commonly used in Statistics); as well as most of the

articular cases of fitting linear bodies using vertical distances but

ifferent aggregation criteria described in the literature, as � p fit-

ing ( � p -norm criterion), least quantile of squares ( Bertsimas and

azumder, 2014; Rousseeuw, 1984 ), least trimmed sum of squares

 Atkinson and Cheng, 1999; Rousseeuw, 1983 ), etc. The use of non-

tandard residuals is common in the area of LA and other ar-

as of Operations Research. However, it is not that usual in the

eld of regression analysis although orthogonal ( � 2 ) residuals have

een already used, see, e.g., Euclidean Fitting ( Bargiela and Hart-

ey, 1993; Cavalier and Melloy, 1991; Pinson et al., 2008 ) or Total

east Squares ( Van Huffel and Vanderwalle, 1991 ), mainly applied

o bidimensional data; and the more general geodesic distance

esiduals are applied in geodesic regression ( Fletcher, 2013 ). Quot-

ng the reasons for that fact given by Giloni and Padberg (2002) :

we have left out a summary of linear regression models using the

ore general � τ -norms with τ �∈ { 1 , 2 , ∞} for which the computa-

ional requirements are considerably more burdensome than in the

inear programming case (as they generally require methods from

onvex programming where machine computations are far more

imited today).”

In order to compare the goodness of the fitting for the different

odels, we have developed a new generalized measure of fit. This

roposal is based on a generalization of the classical coefficient of

etermination for least squares fitting, that will allow one to mea-

ure how good is an optimal hyperplane with respect to the best

onstant model, X d = β0 . 

The paper is organized as follows. In Section 2 we introduce

he new framework for fitting hyperplanes as well as some re-
ults that allow us to interpret the obtained solutions for prac-

ical purposes. Next, in Section 3 , a residual-aggregation depen-

ent goodness of fitting index is defined and an efficient approach

or its computation is presented. Two types of residuals are an-

lyzed in more detail, namely those induced by polyhedral-and-

 τ norms for rational τ ≥ 1. In Section 4 , we present new meth-

ds for the location of hyperplanes assuming that the residuals

re measured as the shortest norm-based distance between the

iven points (data set) and the linear fitting body using polyhedral

orms. The results of this section are instrumental. They consti-

ute the basis to address the more general problems in Section 5 ,

ince they will permit to develop inner and outer linear approxi-

ations for more general Mixed Integer Non Linear Programming

MINLP) problems that result in the general case. Section 5 ana-

yzes the location of hyperplanes using � τ norms. Since in this case

on convex problems are derived, we also present outer and inner

inear approximations that reduce, the corresponding MINLP prob-

ems with � τ -norms residuals, to problems with polyhedral norm

esiduals. Section 6 is devoted to the computational experiments.

e report results for synthetic data and for the classical data set

iven in Durbin and Watson (1951) . In addition, we include an il-

ustrative example of the scalability of the methodology with sev-

ral thousands of points. The paper finishes with some concluding

emarks and future research. 

. A flexible methodology for the location of hyperplanes 

Given is a set of n observations or demand points (depending

hat we use the jargon of data analysis or location analysis, re-

pectively) in a (d + 1) -dimensional space, { x 1 , . . . , x n } ⊂ { 1 } × R 

d 

we will assume, for a clearer description of the models, that the

rst, the 0 th , component of x i is the one that account for the in-

ercept, being x 10 = · · · = x n 0 = 1 ). Next, we analyze the problem of

ocating a linear form (hyperplane) to fit these points minimizing

ifferent forms of measuring the residuals and their aggregation.

or any y ∈ R 

d+1 , we shall denote y −0 = (y 1 , . . . , y d ) , i.e., the vec-

or with the last d coordinates of y excluding the first one. First,

e assume that the point-to-hyperplane deviation is modeled by

 residual mapping ε x : R 

d+1 → R + , ε x (β) = D(x −0 , H(β)) , being

 a distance measure in R 

d . This residual represents how “far”

s the point (observation) x ∈ R 

d+1 with respect to the hyperplane

(β) = { y ∈ R 

d : (1 , y t ) β = 0 } . At times, for the sake of brevity, we

ill write the hyperplane as βt X = 0 , with β = (β0 , β1 , . . . , βd ) 
t ∈

 

d+1 . In addition, to simplify the presentation, we will refer, when-

ver no possible confusion occurs, to the residual with respect to

he point x i as εi . 

An overall measure of the deviations of the whole data set with

espect to the hyperplane induced by β is obtained by using an ag-

regation function of the residuals, � : R 

n → R . With this setting,

ne tries to minimize such an aggregation function and the Fitting

yperplane Problem (FHP) consists of finding ˆ β ∈ R 

d+1 such that: 

ˆ ∈ arg min 

β∈ R d+1 
�(ε (β)) , (1) 

here ε (β) = (ε 1 (β) , . . . , ε n (β)) t is the vector of residuals. 

Note that the difficulty of solving Problem (1) depends on both

he expressions for the residuals and the aggregation criterion �. If

and εx are linear, the above problem becomes a linear program-

ing problem. In this paper, we consider a general family of aggre-

ation criteria that includes as particular cases most of the classical

nes used in the literature ( Bertsimas and Mazumder, 2014; Giloni

nd Padberg, 2002; Rousseeuw and Leroy, 2003; Yager and Beli-

kov, 2010 ). 

Let λ1 , . . . , λn ∈ R and let ε ∈ R 

n be the vector of residuals of all

f the points in the given data set. We consider aggregation criteria
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� : R 

n → R + defined as: 

�(ε ) = 

n ∑ 

i =1 

λi ε 

p 

(i ) 
, 1 ≤ p < + ∞ , (2)

where ε (i ) ∈ { ε 1 , . . . , ε n } is such that ε (1) ≤ ��� ≤ε ( n ) . Observe that

this operator defines a multiparametric family (called ordered me-

dian functions ( Nickel and Puerto, 2005 )) that depending on the

choice of the λ-weights captures many of the models proposed in

the literature. 

Most classical models assume that the residuals are defined as

the vertical distance (with respect to the last coordinate) from the

points to the hyperplane: 

ε x (β) = 

∣∣∣∣∣x d − d−1 ∑ 

k =0 

βk 

βd 

x k 

∣∣∣∣∣, (3)

(assuming that βd � = 0). 

Therefore, the difference between them comes from the choice

of the aggregation criterion �. We show below how some classical

methods can be accommodated to our framework. 

1. The Least Sum of Squares (LSS) method, credited to

Gauss (1809) , is the most widely used approach to esti-

mate the coefficients of a linear model due to its simplicity (a

closed form for the optimal coefficients is obtained) and its

theoretical implications for the inference over the total popu-

lation. However, somehow restricting hypotheses are required

in order to be applied (see, e.g., Giloni and Padberg, 2002 ).

The LSS criterion is defined as the sum of the squares of

the residuals, that is: �LSS (ε 1 , . . . , ε n ) = 

∑ n 
i =1 ε 

2 
i 
, where the

residuals ε k are given by (3) . The reader may observe that LSS

corresponds to Problem (1) with λt = (1 , . . . , 1) , p = 2 and ε
the vertical distance. 

2. The Least Absolute Deviation (LAD) method (introduced

by Edgeworth, 1887 ) consists of minimizing the sum of

the absolute value of the vertical residuals. Therefore,

�LAD (ε 1 , . . . , ε n ) = 

∑ n 
i =1 | ε i | . Note that LAD corresponds to

the model in (1) for λt = (1 , . . . , 1) and p = 1 . 

3. The Least Quantile of Squares (LQS), recently introduced by

Bertsimas and Mazumder (2014) , is a generalization of the

Least Median of Squares (LMS) introduced by Hampel (1975) .

It also considers vertical distances as residuals, but they

are aggregated to minimize the r -quantile of its distribu-

tion ( r ranges in { 1 , . . . , n } ). Hence, �LQS (ε 1 , . . . , ε n ) = r −
quantile (ε 2 

1 
, . . . , ε 2 n ) := ε 2 

(r) 
. 

This method also fits to the general form of the aggregation cri-

teria considered in this paper. In this case, following the nota-

tion introduced in (2) , the LQS hyperplane can be obtained for

p = 2 and λ = ( 

(r−1) ︷ ︸︸ ︷ 
0 , . . . , 0 , 1 , 

(n −r) ︷ ︸︸ ︷ 
0 , . . . , 0 ) . (Observe that LMS hyper-

plane is also obtained within the same scheme when p = 2 and

λ = ( 

� n 
2 
� ︷ ︸︸ ︷ 

0 , . . . , 0 , 1 

� n 
2 
� 

, 
︷ ︸︸ ︷ 
0 , . . . , 0 ) .) 

4. The Least Trimmed Sum of Squares (LTS) method was intro-

duced by Rousseeuw (1984) as a robust alternative to the LSS

method, in that it has a high breakdown point. Recall that, in-

tuitively, the breakdown point of an estimator is the proportion

of incorrect observations (e.g., arbitrarily large observations) an

estimator can handle before giving an incorrect (e.g., arbitrarily

large) result. With our notation, it corresponds to choose again

as residuals the vertical distance, p = 2 , and the aggregation

criterion �LT S (ε 1 , . . . , ε n ) = 

∑ h 
i =1 ε 

2 
(i ) 

where ε (i ) ∈ { ε 1 , . . . , ε n }
with ε (i ) ≤ ε (i +1) for i = 1 , . . . , n − 1 , and h ∈ { 1 , . . . , n } . The

most common choice for h is � n 
2 
� , considering the best 50%

square residuals. 
In the following, we denote by LTS ( α) the LTS method when

100 − α% of the data is discarded, i.e., the percentage of the

data that may be considered as outliers. 

The function �, introduced in (2) , is invariant against permuta-

ions of its components (sometimes called symmetric in the related

iterature) and, for non negative lambda weights, a monotone func-

ion, ensuring that the ordering of the individual residuals do not

ffect the overall goodness of the fitting. Moreover, it also implies

hat a componentwise smaller vector of residuals gives rise to a

ore accurate fitting. 

The natural implication of the assumption made about the def-

nition of residuals is that, as expected, the response (projection)

f a point on a given hyperplane differs from the classical eval-

ation. In this setting the response is the closest point, with re-

pect to the distance D, to the hyperplane H(β) . For the sake of

eadability, we include the following result which follows applying

Mangasarian, 1999, Theorem 2.1) to the definition of the residual

apping ε z = min y ∈H(β) ‖ z −0 − y ‖ . 
emma 2.1. For a given point z t = (1 , z 1 , . . . , z d ) and the hy-

erplane H(β) the response ˆ z consistent with the residual

 z = min y ∈H(β) ‖ z −0 − y ‖ is given by ˆ z = z −0 − βt z 

‖ β−0 ‖ ∗ k(β) , where

 y ‖ ∗ = max z∈ R d : ‖ z‖≤1 z 
t y is the dual norm to ‖ y ‖ and k(β) =

rg max ‖ x ‖ =1 β
t 
−0 

x . Moreover, 

 z = 

| βt z| 
‖ β−0 ‖ 

∗ . (4)

From the above result, the response for a point with a un-

nown coordinate (without loss of generality, the last component,

 ), namely z = (1 , z 1 , . . . , z d−1 , 0) t , will be given by: 

ˆ 
 d = − βt z 

‖ β−0 ‖ 

∗ k(β) d . 

ence, differentiating ˆ z with respect to each z j , j = 1 , . . . , d − 1 , we

et 

∂ ̂  z d 
∂z j 

= − β j 

‖ β−0 ‖ 

∗ k(β) d , 

hich may be interpreted as the marginal variation of the d -th co-

rdinate with respect to the j th coordinate whenever the other di-

ensions remain constant. 

Explicit expressions for such projections, namely, � 1 , � ∞ 

and � τ -

orms, for τ > 1 are described in the following lemma. 

emma 2.2. Let z = (1 , z 1 , . . . , z d ) 
t , then 

1. If D is the � 1 - distance, 

ˆ z k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

z k if | βk | � = max {| β j | : j = 1 , . . . , d} , 
z k −

βt z 

‖ β−0 ‖ ∞ 

v k , if βk = max {| β j | : j = 1 , . . . , d} , 

z k + 

βt z 

‖ β−0 ‖ ∞ 

v k , if βk = − max {| β j | : j = 1 , . . . , d} , 
for k = 1 , . . . , d, and for some v 1 , . . . , v d ≥ 0 such that 

∑ 

j v j = 1 . 

2. If D is the � ∞ 

- distance, 

ˆ z k = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

z k −
βt z 

‖ β−0 ‖ 1 

, if βk > 0 , 

z k + 

βt z 

‖ β−0 ‖ 1 

, if βk < 0 , 

k = 1 , . . . , d. 

3. If D is the � τ - distance with 1 < τ < + ∞ then 

ˆ z k = z k −
βt z 

‖ β−0 ‖ ν
k τ (β) k , k = 1 , . . . , d 
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k τ (β) k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

sign (βk ) | βk | ν/τ( 

d ∑ 

j=1 

| β j | ν
) 1 /τ

if βk � = 0 

0 if βk = 0 , 

k = 1 , . . . , d, 

being ν such that 1 
τ + 

1 
ν = 1 . 

roof. The proof of items 1. and 2. can be found in

angasarian (1999) . The proof of item 3. follows from the

agrangian optimality condition applied to max ‖ z‖ τ =1 β−0 z. First,

e observe that a Lagrange multiplier exists since the problem

s regular at any point of the � τ unit ball (Note that the gradient

f the unique constraint is always linearly independent.). Next,

he Lagrangian function is L(z, λ) = β−0 z − λ
∑ d 

k =1 | z k | τ . Therefore,

ts partial derivatives are: ∂L 
∂z k 

= βk − λτ | z k | τ−1 sign (z k ) , for all

 = 1 , . . . , d. Hence, equating to zero the partial derivatives, it

ollows that for any index k such that z ∗
k 

� = 0 

∗ = 

βk 

τ | z ∗
k 
| τ−1 

sign (z ∗k ) . (5) 

Let us define the sets I = { k : βk > 0 } , J = { k : βk < 0 } , K = { k :
k = 0 } . Now from Eq. (5) , and taking into account that ‖ z‖ τ = 1 ,

e obtain: 

 z ∗k | τ = 

⎧ ⎪ ⎨ ⎪ ⎩ 

(
sign (z ∗

k 
) βk 

)ν

( 
∑ d 

j=1 sign (z ∗
j 
) β j ) ν

if k ∈ I ∪ J, 

0 otherwise. 

oreover, the Hessian of L is diagonal and all its entries are nega-

ive, namely ∂ 2 L 
∂z 2 

k 

= −λτ (τ − 1) | z ∗
k 
| τ−2 . This implies that z ∗ and λ∗

re local maxima. 

In the particular case of τ = 2 , one can check that k 2 (β) k = βk 

hich simplifies the above expression. 

�

We note in passing that ε x = D ‖·‖ (x −0 , H(β)) and thus, accord-

ng to Lemma 2.1 

 ‖·‖ (x −0 , H) = 

| βt x | 
‖ β−0 ‖ 

∗ . (6)

Observe also that when the points in the data set lie exactly on

 hyperplane, H, this hyperplane is always optimal for all versions

f Problem (1) , although for some specific choices of λ the solution

ay not be unique and different hyperplanes may be alternative

ptima. 

Remark that the standard residual (vertical distance) is a dis-

ance measure that is not induced by a norm, but its expression

an be written in an analogous form and so it fits to the shape of

he distances that are considered in this paper. In particular, the

ertical distance (with respect to the last coordinate) may be de-

ned as D V (x, H) = | βd x d −
∑ d−1 

i =1 βi x i − β0 | / | βd | . 
The above aggregation criteria (2) and residual functions (4) are

ather general and exhibit good structural properties. On the one

and, they accommodate most of the already considered fitting

ethods in the literature. On the other hand, one can always ex-

loit its properties and different representations in order to solve

roblem (1) . In the following we prove some structural properties

hat imply the possibility of applying different methodologies to

olve (1) . 

We note, without proof (it can be found in an extended version

f this paper ( Blanco et al., 2016 )), that our globalizing criterion

( ε x ( ·)) is a difference of convex (D.C.) functions. This fact allows

ne to apply all the available results on the optimization of this
lass of functions (see, e.g., Thoai, 1999 ). Alternatively, we can give

 more efficient representation that helps latter in the resolution

f the problem. This representation is based on simpler functions

hich replace ϕ by more friendly classes of functions (with re-

ards to the optimization phase) and that permit to get a manage-

ble form of a mathematical program. In the following we include

 first mathematical programming formulation for the generalized

tting Problem (1) , for any choice of � and ε x . 

heorem 2.3. Let { x 1 , . . . , x n } ⊆ R 

d+1 be a set of points, λ ∈ R 

n + ,

k = λk − λk −1 , for k = 2 , . . . , n, p = 

r 

s 
∈ Q and ‖·‖ a norm in R 

d .

roblem (1) is equivalent to the following mathematical programming

roblem: 

in λ1 

n ∑ 

i =1 

z i + 

{ ∑ 

k :�k > 0 

�k 

( 

(n − k + 1) t k + 

n ∑ 

i =1 

z ik 

) 

+ 

∑ 

k :�k < 0 

(�k ) 
n ∑ 

i =1 

ω ik 

} 

(7) 

s.t. ε i ≥
| βt x i | 

‖ β−0 ‖ 

∗ , ∀ i = 1 , . . . , n, (8) 

 

s 
i ≥ ε 

r 
i , ∀ i = 1 , . . . , n, (9) 

 k + z ik ≥ z i , i = 1 , . . . , n, k = 2 , . . . , n, �k > 0 (10) 

n ∑ 

i =1 

γik = n − k + 1 , k = 2 , . . . , n : �k < 0 (11) 

 ik ≤ Mγik , i = 1 , . . . , n, k = 2 , . . . , n : �k < 0 (12) 

 ik ≤ z i , i = 1 , . . . , n, k = 2 , . . . , n : �k < 0 (13) 

ik ∈ { 0 , 1 } , ω ik ≥ 0 , �k < 0 , 

 ik , t k ≥ 0 , i, k = 1 , . . . , n, �k > 0 

∈ R 

d+1 , ε i ≥ 0 , i = 1 , . . . , n, 

here M > 0 is a suitable large constant. 

roof. Applying the result in Grzybowski et al. (2011 , Theorem 3.6)

he aggregation function � can be equivalently written as 

(ε (β)) = λ1 

n ∑ 

i =1 

ε i (β) p + 

n ∑ 

k =2 

�k θk (β) , (14)

here θk (β) = max { ε i 1 (β) p + . . . + ε i n −k +1 
(β) p : for all 

 i 1 , . . . , i n −k +1 } ⊂ { 1 , . . . , n } such that i 1 < i 2 < . . . < i n −k +1 } . (The

eader may observe that the functions θ k are usually called

(n − k + 1) -centrum in the specialized literature of optimization

ickel and Puerto, 2005 .) The z -variables in the formulation rep-

esent the residuals raised to the power of p = 

r 
s . The objective

unction (7) has three terms. The first one corresponds to the first

ne in (14) . The terms (n − k + 1) t k + 

∑ n 
i =1 z ik together with the

onstraints (10) provide valid representations for the (n − k + 1) -

entrum functions of the elements of the vector z = (z 1 , . . . , z n ) 
t 

henever �k is positive. On the other hand, if �k is negative the

xpression 

∑ n 
i =1 ω ik together with (12), (13) and γ ik ∈ {0, 1} give a

alid representation for the (n − k + 1) -centrum functions of the

lements of the vector z = (z 1 , . . . , z n ) 
t . Finally, (8) and (9) ensure

hat z i = ε p 
i 
, for all i = 1 , . . . , n in the optimal solution of the

roblem. �
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Note that the above problem is a MINLP problem, whose con-

tinuous relaxation is in general non convex due to the set of

constraints (8) . Apart from the mathematical programming for-

mulation above, one may use alternative (in some cases bet-

ter) formulations for the ordering problems as those provided in

Fernández et al. (2014) . In particular, some important special or-

dered median aggregation criteria permit to have a simpler formu-

lation that avoids the use of binary variables. The following result

shows a better formulation for the fitting problem under the as-

sumption that 0 ≤ λ1 ≤ . . . ≤ λn . We call this setting for lambda

the monotone case . 

Proposition 2.4. Let { x 1 , . . . , x n } ⊂ R 

d+1 be a set of demand

points, λ ∈ R 

n , such that 0 ≤λ1 ≤ ��� ≤λn , p = 

r 

s 
∈ Q with r > s ∈ N ,

gcd (r, s ) = 1 and ‖·‖ a norm in R 

d . Then, Problem (1) is equivalent

to the following mathematical programming problem: 

min 

n ∑ 

j=1 

v j + 

n ∑ 

i =1 

w i 

s.t. (8) , (9) , 

v j + w i ≥ λi z j , ∀ i, j = 1 , . . . , n, 

z i , θi ≥ 0 , v , w ∈ R 

n , β ∈ R 

d+1 . 

Proof. The proof follows by the representation of the order-

ing between the residuals by permutation variables, which for

0 ≤λ1 ≤ ��� ≤λn , allows one to write the objective function in

Problem (1) as an assignment problem which is totally unimodular.

Therefore, it can be equivalently rewritten using its dual problem.

The interested reader is refereed to Blanco et al. (2014) for further

details on this transformation. �

The reader may observe that the nonlinear constraints z s 
i 
≥ ε r 

i 
for all i = 1 , . . . , n can be transformed into a set of second or-

der cone constraints using a simplified version of Lemma 1 in

Blanco et al. (2014) . This implies that those constraints can be effi-

ciently handled by nowadays nonlinear solvers since they are con-

vex and friendly for the optimization. 

Remark 2.5. Let r, s ∈ N \ { 0 } with gcd (r, s ) = 1 , and k = � log 2 (r) � .
Then, there exist variables u 1 , . . . , u k −1 ≥ 0 such that each con-

straint z s ≥ε r in (8) can be equivalently written as constraints

in the form: u 2 
j 
≤ u 

a j 
l 

z b j ε c j , ε 2 ≤ u h u 
d h 
h −1 

z f h ε g h , u j ≥ 0, with j =
1 , . . . , k − 1 and such that 1 ≤ a j + b j + c j ≤ 2 for given a j , b j , c j ∈
Z + and d h , f h , g h ∈ Z + such that d h + b h + c h = 1 . 

By the above remark, the nonlinear constraints in the form

z s ≥ε r are written as second order cone constraints in the form

X 

2 ≤ YZ or X 

2 ≤ Y (for some choices of the variables X, Y and Z in

our model). 

Hence, the difficulty of solving Problem (7) –(13) , depends es-

sentially on the choice of the residuals since all except constraints

(8) are linear or second order cone constraints which can be ef-

ficiently handled with nowadays modern optimization techniques.

In the next sections we analyze different choices for the residuals. 

Remark 2.6 (Subset Selection and Regularization) . In the case

where the number of points ( n ) is much smaller than the dimen-

sion of the space ( d ), it is common in Statistics to compute fit-

ting hyperplanes over a smaller dimension space. The new space

is determined by those components that, after projecting, permits

a good fitting in a lower dimension space. Several methods have

been proposed in the recent literature to perform such a compu-

tation. If the dimension of the new space, q < d , is given, a con-

straint in the form ‖ β−0 ‖ 0 ≤ q (here ‖·‖ 0 stands for the support

function or nuclear norm, i.e., the number of nonzero components

of the vector) may be included in the mathematical programming
ormulation (see Bertsimas et al., 2016; Miller, 2002 ), which gives

ise to the so called Subset Selection Problem. If such a dimension

s not known, regularization methods that penalize the number of

onzero elements or the size of β−0 can be applied to solve the

eature Selection Problem (see Miyashiro and Takano, 2015 ). Note

hat both types of approaches can be incorporated in our models

lthough this will increase its computational complexity. 

. Goodness of fitting 

After addressing the problem of locating/fitting a hyperplane

ith respect to a set of points, we will analyze the goodness of

his fitting extending the well-known coefficient of determination,

 

2 , in Regression Analysis. (Recall that the coefficient of determina-

ion is the proportion of the variance in the dependent variable

hat is predictable from the independent variable(s).) For the sake

f presentation, we assume that the variable that needs to be an-

lyzed as dependent to the others is the last coordinate X d , or in

ther words Y = X d . The goodness of fitting index , GoF, is defined

s: 

oF �, ε = 1 − �∗

�∗
0 

, 

here �∗ is the optimal value of (1) , namely �(ε x ( ̂  β)) , and �∗
0 

s the optimal value of Problem (1) when it is additionally re-

uired that β is in the form β = (β0 , 

d−1 ︷ ︸︸ ︷ 
0 , . . . , 0 , −1) , i.e., the hy-

erplane is forced to be constant ( X d = β0 ). Note that the com-

onents 1 , . . . , d − 1 do not appear in the model. Hence, �∗
0 

mea-

ures the global error assumed by the best fitting horizontal hyper-

lane; whereas GoF �, ε measures the improvement of the model

hat considers all the dimensions with respect to the one that

mits all (except one) of them. Observe that this coefficient coin-

ides with the classical coefficient of determination provided that

he aggregation criterion is the overall sum and the residuals are

he squared vertical distances: in that case ̂ β0 = x ·d (the sample

ean of the dependent variable). Note that GoF is well defined if
∗
0 

� = 0 . 

The GoF clearly verifies one of the important properties of the

tandard coefficient of determination, 0 ≤ GoF �, ε ≤ 1. Furthermore,

ne may interpret the coefficient as a measure of how good is

he best possible hyperplane under certain criterion and residual

hoice with respect to the best horizontal hyperplane. When GoF is

lose to 0, it is because �∗ � �∗
0 , so not appreciable improvement

s given by the complete model (which considers all the compo-

ents) with respect to the simple constant model; whenever GoF

s close to 1, it means that �∗ � �∗
0 , being the proposed model

ignificatively better than the constant model (note that GoF = 1

ff �∗ = 0 , i.e., when the model perfectly fits the demand points).

ence, the closer the GoF to one, the better the fitting; whereas

he closer to zero, the better is the constant model with respect to

he full model. 

Observe that the above definition coincides with some of the al-

ernatives to measure the goodness of fitting for robust approaches

o the least sum of squares methodology (see McKean and Siev-

rs, 1987 ). 

To obtain the GoF, apart from solving Problem (1) to get �∗, we

ust also solve the problem: 

∗
0 = min 

β0 ∈ R 
�(D(x 1 , H 0 ) , . . . , D(x n , H 0 )) , (15)

here H 0 = { y ∈ R 

d : y d = β0 } for some β0 ∈ R . 

emma 3.1. Let the residual mapping ε x : R 

d+1 → R + be induced by

 norm ‖·‖ . Then, Problem (15) is equivalent to 

∗
0 = min 

β0 ∈ R 
�(κε | x 1 d − β0 | , . . . , κε | x nd − β0 | ) , (16)
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here 

ε = 

1 

max z∈ R d : ‖ z‖≤1 z d 

roof. For the point x k in the data set, the residual under

he assumption X d = β0 is ε k (β0 ) = D(x k , H 0 ) = min y ∈H 0 
‖ x k − y ‖ ,

here H 0 = { y ∈ R 

d : y d = β0 } for some β0 ∈ R . Then, by (4) in

emma 2.1 

 k (β0 ) = 

| x kd − β0 | 
‖ (0 , . . . , 0 , −1) ‖ 

∗

ith ‖·‖ ∗ the dual norm of ‖·‖ . By definition of the dual norm

 y ‖ ∗ = max z∈ R d : ‖ z‖≤1 z 
t y . Hence, applying such a definition to y =

(0 , . . . , 0 , −1) the result follows. �

From the above result it is easy to see that κε = 1 , provided

hat εx is induced by any � τ norm, even for the � 1 and the � ∞ 

ases. However, as we will see in Section 4 , not all the norms have

he same κε constant. 

Let us introduce the function f λ,p (β) := 

∑ n 
i =1 λi ε 

p 
(i ) 

. Next, with

ur specifications for �, the problem to be solved to obtain �∗
0 is:

∗
0 = κε min 

β0 ∈ R 
f λ,p (β) (17) 

here ε i = | x id − β0 | for i = 1 , . . . , n . 

Solutions to Problem (17) for a given β0 ∈ R motivate the in-

roduction of the concept of ordered median point . Indeed, β0 is a

 λ, p )- ordered median point (( λ, p )-omp in short) if it is an optimal

olution to (17) . 

Some special cases of ( λ, p )-omp are well-known and widely

sed in the so-called Location Analysis literature. If λi = 1 for all

 = 1 , . . . , n, the ( λ, 1)-omp is known to coincide with the median,

edian (x 1 d , . . . , x nd ) , of { x 1 d , . . . , x nd } ; while the ( λ, 2)-omp is the

rithmetic mean of the x . d -values. 

In the general case, i.e., for arbitrary λ and p , the ordered me-

ian points do not have closed form expressions ( Fernández et al.,

014; 2017 ), although they have been around in the field of LA for

everal years ( Nickel and Puerto, 1999; 2005 ). Moreover, they can

e obtained, as shown below, to be used in the computation of the

oodness of fitting index. 

In the following we show how to solve (17) for general choices

f non-negative vectors λ and p ∈ [1 , + ∞ ) . Without loss of gen-

rality we assume that x 1 d ≤ x 2 d ≤ . . . ≤ x nd . Let us denote further

y αik := 

x id + x kd 
2 the solution of the equation ε p 

i 
(β) = ε p 

k 
(β) for all

 < k, i, k = 1 , . . . , n in the range ( x 1 d , x nd ). Let A be the set con-

aining all the x . d and α points and denote by z k the k th point in

 sorted in non-decreasing sequence. By construction, in the in-

erval I k = (z k , z k +1 ) all the functions ε p 
i 
(β) are monotone for all

 = 1 , . . . , n . Let us denote by A c the set of all the critical points of

he function f λ, p in the interval ( x 1 d , x nd ) for p ∈ (1 , + ∞ ) . 

heorem 3.2. For any non-negative vector λ and p ∈ (1, ∞ ) the set

 ∪ A c always contains a ( λ, p ) -omp. For p = 1 the set A always con-

ains a ( λ, 1) -omp. 

roof. For all β ∈ I k , the function f λ, p for p ∈ (1 , + ∞ ) is a non-

egative linear combination of monotone functions. Therefore, its

erivative can vanish in at most one point. This implies that the

inimum of f λ, p is always attained on A ∪ A c . If p = 1 then f λ, p 

s a non-negative linear combination of linear functions; and thus

he minimum in the interval I k is attained in one of its extreme

oints. Hence, the minimum of f λ, 1 is attained on A . �

The reader may observe that the implication of the above the-

rem is that ˆ β0 can be always obtained by a simple enumeration

f the set A ∪ A c (Observe that the cardinality of this set is O ( n 2 )).
hen, �∗
0 

= κε 
∑ n 

i =1 λi | x id − ˆ β0 | p (i ) 
. Thus, the complexity of comput-

ng GoF is essentially the same that the resolution of Problem (1) ,

hich must be solved to obtain �∗. 

xample 3.3. The data considered in this example consists of 47

oints in R 

2 about stars of the CYG OB1 cluster in the direction

f Cygnus ( Humphreys, 1978 ). The first coordinate, X 1 , is the log-

rithm of the effective temperature at the surface of the star and

he second one, X 2 , is the logarithm of its light intensity. This data

et has also been analyzed in Rousseeuw and Leroy (2003) and

ager and Beliakov (2010) , among others. 

We run the LSS, LAD, LMS and LTS( α) with α ∈ {50, 75, 90}.

he obtained lines and the goodness of fitting indices (GoF �, ε ) are

hown in Fig. 1 . 

Observe that the LSS and LAD models were not able to ade-

uately fit the data while the others (which are somehow similar)

how their better performance against the outliers. Note also that

oF reflects this fact, although it is not clear whether LTS(75) (the

ne with the largest GoF) is better than the others. 

In order to show the behavior of the LTS models and which are

he results of their optimal fitting lines, Fig. 2 shows the fitting

ines that minimize the 50%, 75% or 90% of the residuals and the

oints that the corresponding optimization problems discard (filled

ots in the subfigures) to reach the fitted lines. 

Observe that the percentage of discarded data ( 1 − α) is a key

oint in LTS models. Several measures are available to determine

reakdown points. One of the most widely used measures is the

 α-index (see Atkinson and Cheng, 1999; Hofmann et al., 2010 ),

hich is defined as: 

 α = 

�∗
LT S(α) 

�∗
LSS 

· n − d 

� αn � − d 

n Fig. 3 , we show the R α index as a function of α, for the stars

ataset. A big slope change in such a function indicates the ade-

uacy of using the corresponding α for the LTS model. As can be

bserved, R α has a high-breakdown point in α = 90% as detected

y GoF. Actually, although both indices measure different charac-

eristics of the model (GoF measures the convenience of using the

odel against the simple constant one and R α the detection of

utliers data in the sample), they have a similar behavior ( R α is

imilar to 1 − GoF LT S(α) ). Moreover, the index R α for the three LTS

odels can be seen in the table of Fig. 1 . 

. Fitting hyperplanes with block-norm residuals 

In this section, we present models to compute the parameters

f the fitting hyperplanes when distances are assumed to be mea-

ured by a block-norm between the points and the closest point in

he hyperplane; and the aggregation criterion is considered in the

eneral form given by Problem (1) . Recall that a block norm is a

orm such that its unit ball is a polytope symmetric with respect

o the origin and with non empty interior. Block norms, also re-

erred to as polyhedral norms, play an important role in the mea-

urement of distances in many areas of Operations Research and

pplied Mathematics as for instance in Location Analysis or Lo-

istics. They are often used to model real world situations (like

easuring highway distances) more accurately than the standard

uclidean norm. 

The results in this section will be instrumental to address the

eneral problem of finding hyperplanes with general norms (see

ection 5 ). Using block norms induce linear programming prob-

ems and moreover, by its denseness property, any norm can be

rbitrarily approximated by block ones ( Ward and Wendell, 1985 ). 

We denote by ‖·‖ B the norm in R 

d whose unit ball is given

y a symmetric with respect to the origin, with non empty inte-
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Fig. 1. Optimal lines with the classical methods for the stars data set. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 2. Estimated models and discarded points (filled dots) in LTS models. 

Fig. 3. R α index for the stars dataset. 
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rior polytope B , i.e., B = { x ∈ R 

d : ‖ x ‖ B ≤ 1 } . Let Ext (B ) = { b g : g =
1 , . . . , G } be the set of extreme points of B and B 0 the polar set of

B which is defined as: 

B 

0 = { v ∈ R 

d : v t b g ≤ 1 , g = 1 , . . . , G } 
nd Ext (B 0 ) = { b 0 
1 
, . . . , b 0 

G 0 
} . 

It is well-known ( Ward and Wendell, 1980; 1985 ) that the eval-

ation of a block norm can be done in terms of the extreme points

f the polar set of the polytope B : 

 x ‖ B = max {| x t b 0 g | : g = 1 , . . . , G 

0 } , for all x ∈ R 

d . (18)

he above expression is a linear program, whose complexity de-

ends on the number of extreme points of B 0 . In the case of ex-

onentially many extreme points, one can always resort to column

eneration techniques to improve the performance of its computa-

ion. Special cases of block norms are the Manhattan ( � 1 ) and the

hebyshev ( � ∞ 

) norms for adequate choices of the extreme points

f the unit balls. Any block norm ‖·‖ B in R 

d induces a distance

etween vectors x, y ∈ R 

d given by D B (x, y ) = ‖ x − y ‖ B . 
Given a set of points { x 1 , . . . , x n } ⊆ R 

d and a polyhedral unit ball

 , our goal is to obtain the hyperplane H(β) = { y ∈ R 

d : (1 , y t ) β =
 } such that the overall distance D B ( ·, ·) from the sample to H(β)

s minimized according to the aggregation function � (for 1 ≤ p =
r 
s ∈ Q ). That is: 

min 

∈ R d+1 

n ∑ 

i =1 

λi ε 

p 

(i ) 
, ( RM B )

here for any x ∈ R 

d , ε x = D B (x, H(β)) , is the “‖·‖ B -projection”

f x onto the hyperplane H(β) , and ε ( i ) denotes the element in

 ε 1 , . . . , ε n } which is sorted in the i th position (in nondecreasing

rder). 
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We recall that according to Eq. (4) in Lemma 2.1 , for any poly-

ope B symmetric with respect to the origin and with non empty

nterior, and H(β) = { y t ∈ R 

d : (1 , y t ) β = 0 } then D B (x −0 , H(β)) =
| βt x | 

‖ β−0 ‖ B 0 
, where B 0 is the polar set of B and x t = (1 , X 1 , . . . , X d ) ∈

 

d+1 is a given point. 

The following is a simpler valid formulation for the hyperplane

ocation problem with block norm residuals. For a set of linear

quations a t 
j 
x = b j , for j = 1 , . . . , m, we denote by 

∨ m 

j=1 [ a 
t 
j 
x = b j ]

he disjunctive constraint that requires that at least one of the

quations a t 
j 
x = b j (for j = 1 , . . . , m ) is satisfied by x . 

heorem 4.1. Let { x 1 , . . . , x n } ⊂ R 

d+1 be a set of points and let B ⊂
 

d be a polytope with Ext (B ) = { b 1 , . . . , b G } . Then, ( RM B ) is equiva-

ent to the following disjunctive programming problem 

∗(B ) := min 

n ∑ 

j=1 

λ j θ j (19) 

s.t. (9) −(13) 

ε i ≥ βt x i , ∀ i = 1 , . . . , n, (20) 

 i ≥ −βt x i , ∀ i = 1 , . . . , n, (21) 

t 
−0 b g ≤ 1 , ∀ g = 1 , . . . , G, (22) 

G ∨ 

g=1 

[
βt 

−0 b g = 1 

]
, (23) 

ik ∈ { 0 , 1 } , ω ik ≥ 0 , �k < 0 , 

 ik , t k ≥ 0 , i, k = 1 , . . . , n, �k > 0 

∈ R 

d+1 , ε i ≥ 0 , i = 1 , . . . , n. 

roof. Let us denote by ε i = D B (x i , H(β)) . By Lemma 2.1 , ε i =
| βt x i | ‖ β−0 ‖ B 0 

. Let β∗ ∈ R 

d+1 be an optimal solution of ( RM B ) with

∗
−0 

� = 0 . Then, β′ = 

β∗
‖ β−0 ‖ B 0 

is also an optimal solution of ( RM B )

ith ‖ β′ 
−0 ‖ B 0 = 1 . Thus, there is an optimal solution of ( RM B ),

, that verifies D B (x −0 , H(β)) = | βt x | for any x t = (1 , x 1 , . . . , x d ) ∈
 

d+1 . Therefore, we can assume that ‖ β−0 ‖ B 0 = 1 , hence ε i =
 βt x i | (constraints (20) and (21) ). Since (B 0 ) 0 = B then ‖ β−0 ‖ B 0 =

ax {| ∑ d 
i =1 βi b gi | : g = 1 , . . . , G } . Hence, there exists g 0 ∈ { 1 , . . . , G }

uch that ‖ β−0 ‖ B 0 = 1 (disjunctive constraint (23) ) and thus
 d 
k =1 βk b gk ≤

∑ d 
k =1 βk b g 0 k = 1 (constraint (22) ). (Note that absolute

alues do not need to be taken explicitly into account since if

 g ∈ Ext( B ), then −b g ∈ Ext (B ) .) �

The above problem can be equivalently written as a Mixed In-

eger Second Order Cone Optimization (MISOCO) problem once

onstraints (9) are transformed, using the result in Remark 2.5 ,

nd binary variables are added to decide which g 0 is chosen to

erify constraint (23) . By the same token, this problem can be

lso equivalently rewritten as G (recall that G is the cardinality of

xt( b )) different Second Order Cone Programming Problems (SOCP)

each of them fixed to verify one of the disjunctive constraints).

urthermore, mixed integer non linear disjunctive programming

echniques (see, e.g., Balas, 1979, Lee and Grossmann, 20 0 0 ) may

e used to solve the corresponding problem. Based in the above

iscussion, the following is another valid MINLP formulation for

 RM ). 
B 
orollary 4.2. Let { x 1 , . . . , x n } ⊂ R 

d+1 be a set of points and let B ⊂
 

d be a polytope with Ext (B ) = { b 1 , . . . , b G } . Then, (19) is equivalent

o the following problem: 

∗(B ) := min 

n ∑ 

j=1 

λ j θ j (24) 

s.t. (9) −(13) 

ε i ≥ βt 
h x i , ∀ i = 1 , . . . , n, h = 1 , . . . , G, (25) 

 i ≥ −βt 
h x i , ∀ i = 1 , . . . , n, h = 1 , . . . , G, (26) 

t 
−0 h b g ≤ 1 , ∀ g = 1 , . . . , G, h = 1 , . . . , G, (27) 

t 
−0 h b h = ξh , h = 1 , . . . , G, (28) 

G ∑ 

h =1 

ξh = 1 , (29) 

h ∈ R 

d+1 , ξh ∈ { 0 , 1 } , ∀ h = 1 , . . . , G, 

ik ∈ { 0 , 1 } , ω ik ≥ 0 , �k < 0 , 

 ik , t k ≥ 0 , i, k = 1 , . . . , n, �k > 0 

 i ≥ 0 , i = 1 , . . . , n. 

Some special cases for the aggregation function � allow us

ven simpler formulations reducing considerably the computa-

ional complexity of the problems. In particular, when λi = 1 for

ll i = 1 , . . . , n, the integer variables representing ordering ( w ij ) can

e removed from the above formulation. 

The following result permits to consider polyhedral norms

hich are dilations of other polyhedral norms, i.e., polyhedral

orms ‖·‖ μB for some bounded polyhedron B and μ> 0 ( μB =
 μ z : z ∈ B } ). It will be very useful in the next section when

e approximate the problem of locating hyperplanes with general

orms by problems with polyhedral ones. 

emma 4.3. Let B be a polytope and μ> 0 . Then, if β∗ is an optimal

olution for Problem (24) for B = B , ̂ β = 

1 
μβ∗ is an optimal solution

or (24) when B = μB . Moreover, ρ∗(μB ) = 

1 
μp ρ∗( B ) . 

roof. It is sufficient to observe that for any β ∈ R 

d+1 : 

 (β1 , . . . , βd ) ‖ 

μB 
0 

= max {| μb t g β
t | : g = 1 , . . . , G } 

= μ max {| b t g βt | : g = 1 , . . . , G } = μ‖ (β1 , . . . , βd ) ‖ 

B 
0 . 

Since �μB 
(ε 1 , . . . , ε n ) = 

1 
μp �B 

(ε 1 , . . . , ε n ) , we get the relation

etween the optimal values. Let β∗ be an optimal solution of (24) .

hen, 1 
μβ∗ is clearly a feasible solution to Problem (24) when B =

B since ‖ ( 1 μβ∗
1 
, . . . , 1 

μβ∗
d 
) ‖ 

μB 
0 = ‖ (β∗

1 
, . . . , β∗

d 
) ‖ 

B 
0 = 1 . �

In order to compute GoF for solutions to problems with block-

orm residuals, note that the one dimensional Problem (16) does

epend on � and also on the residuals through κε . Let us denote

y κB the constant κε when the residuals εx are defined as the

lock-norm projection with unit ball given by the polytope B . 

orollary 4.4. Let B ⊂ R 

d be a polytope. The Goodness of Fitting in-

ex, GoF, when the residuals are defined as the block-norm distance

ith unit ball B, can be computed as: 

oF �,ε = 1 − �∗∑ n 
i =1 | x id − ((λ, p) − omp (x ·d )) | p · max 

g=1 , ... ,G 
| b gd | , 
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Fig. 4. Optimal lines obtained with block-norm residuals for the stars data set. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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where ( λ, p ) -omp ( x ·d ) is the solution to the Problem (16) with resid-

uals measured with the polyhedral norm with unit ball B. 

Proof. By Lemma 3.1 the goodness of fitting index GoF �, ε can be

computed as: 

GoF �,ε = 1 − �∗

min β0 ∈ R �(κB | x 1 d − β0 | , . . . , κB | x nd − β0 | ) , (30)

where κB = 

1 
max z∈ B z d 

. 

Observe that since B is a polytope then the above maximum is

attained in an extreme point of B and thus κB = 

1 
max g=1 , ... ,G b gd 

. 

Next, Problem (16) in this case can be expressed as: 

κB · min 

β0 ∈ R 

n ∑ 

i =1 

λi | x ·d − β0 | p (i ) 
. 

Recall that this is a ( λ, p ) Ordered median problem and that its op-

timal solution, a ( λ, p )-omp, can be easily obtained by the result

in Theorem 3.2 . Replacing the optimal solution to this problem in

(30) it results in: 

GoF �,ε = 1 − �∗∑ n 
i =1 | x id − ((λ, p) − omp (x ·d )) | p · max 

g=1 , ... ,G 
| b gd | . �

Note that for λ = (1 , . . . , 1) the ( λ, 1)-omp is the standard

median point and thus the expression 

∑ n 
i =1 | x id − median (x ·d ) | is

what it is usually called the mean absolute deviation with respect to

the median . 

The same dataset used in Example 3.3 allows us to show

the expressions of the optimal fitting hyperplanes when different

block-norm residuals are considered: 

Example 4.5. We consider again the stars data used

in Example 3.3 . In this case, we run our implementa-

tion in R for � 1 -norm, � ∞ 

-norm and hexagonal norm (as

the one used in Nickel and Puerto (2005) with Ext (B ) =
{±(2 , 0) , ±(2 , 2) , ±(−1 , 2) } ) residuals. This last choice is in-

cluded only for illustrative purposes of the presented methodology

and by its applicability in LA, although its statistical meaning may

need further investigation. We also note in passing that the use

of different metrics, based on geodesic of the considered space, is

natural in geodesic regression ( Fletcher, 2013 ). We use four dif-

ferent criteria: overall SUM ( λ = (1 , . . . , 1) and p = 1 ), MAXimum

( λ = (1 , 0 , . . . , 0) and p = 1 ), K -centrum ( λ = ( 

K ︷ ︸︸ ︷ 
0 , . . . , 0 , 

n −K ︷ ︸︸ ︷ 
1 , . . . , 1 ) )

for K = � 0 . 75 n � (the model will minimize the sum of the 25%

greatest residuals) and anti- K -centrum ( λ = ( 

K ︷ ︸︸ ︷ 
1 , . . . , 1 , 

n −K ︷ ︸︸ ︷ 
0 , . . . , 0 ) ) for

K = � 0 . 5 n � (the model will minimize the sum of the 50% smallest
esiduals). The results for all the combinations and the graph for

he K -centrum lines are shown in Fig. 4 . 

Note that different situations may happen when running the

ifferent models: in the case of the SUM criterion the models for

 1 and hexagonal residuals coincide; for the MAX criterion the

hree optimal lines are the same, and for the K -centrum and anti-

 -centrum the three models are different. Furthermore, even in the

ase when the models coincide, one may have different goodness

f fitting indices due to the different way of measuring distances

see the � 1 and hexagonal residuals for the MAX criterion). 

From the above, we observed that the GoF are not comparable

hen different residuals are used in the models since the value

iven to the residuals (both with respect to the best model and

ith respect to the simplified model with only intercept) is dif-

erent. Thus, the generalized coefficient allows us to compare the

oodness of fitting between models provided that the distance (to

easure the residuals) and the aggregation criterion are fixed. 

. Fitting hyperplanes with � τ distances 

In this section we deal with the general problem of locating a

yperplane with respect to a set of points and we present a suit-

ble mathematical programming formulation for computing the

ptimal hyperplanes when the residuals are defined as � τ , τ ≥ 1,

istances. Recall that for any z = (z 1 , . . . , z d ) 
t ∈ R 

d the � τ -norm,

≥ 1, is defined as: 

 z‖ τ = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

( 

d ∑ 

k =1 

| z k | τ
) 

1 
τ

if τ < ∞ , 

max 
k =1 , ... ,d 

{| z k |} if τ = ∞ . 

rom this norm we denote by D � τ (z, y ) = ‖ z − y ‖ τ the � τ -distance

etween the points z, y ∈ R 

d . The well-known Euclidean distance,

hat measures the straight line distance between points, is the � 2 -

orm in this family. Note that the extreme cases of � 1 and � ∞ 

rep-

esent both block and � τ -norms, since their unit balls are polytopes

ut also fit within the family of � τ -norms. 

We recall that according to Eq. (4) in Lemma 2.1 , for any

= 

r 
s ∈ Q with r ≥ s ∈ Z + , gcd (r, s ) = 1 and H(β) = { y t ∈ R 

d :

(1 , y t ) β = 0 } , then D τ (z, H(β)) = 

| βt z| 
‖ β−0 ‖ ν , where ν is such that

1 
τ + 

1 
ν = 1 (for τ = 1 , ν = ∞ while for τ = ∞ , ν = 1 ). 

In this section we assume that the residuals are defined

s the shortest distance from the points to the fitted hyper-

lane, namely, for a given point ˆ x = (1 , ̂  x 1 , . . . , ̂  x d ) 
t the residual is:

 ˆ x (β) = D τ ( ̂  x −0 , H(β)) . 
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Let { x 1 , . . . , x n } ⊂ R 

d+1 be a given set of points, λ ∈ R 

n , τ = 

r 
s ∈

 with r > s ∈ N and gcd (r, s ) = 1 , and ‖·‖ τ , a � τ -norm in R 

d . It

ollows from the discussion above that under these hypotheses,

roblem (1) is equivalent to the following mathematical program-

ing problem: 

∗
� τ

:= min 

n ∑ 

j=1 

λ j θ j (31) 

s.t. (8) −(13) , (20) −(21) , 

‖ β−0 ‖ ν = 1 , (32) 

γik ∈ { 0 , 1 } , ω ik ≥ 0 , �k < 0 , 

z ik , t k ≥ 0 , i, k = 1 , . . . , n, �k > 0 

β ∈ R 

d+1 , ε i ≥ 0 , i = 1 , . . . , n. 

Note that the above problem is nonconvex for 1 < τ < ∞ be-

ause of the binary variables and constraint (32) . One could try

o solve Problem (31) using algorithms available in different non-

inear optimization solvers, although no guarantee of optimality is

rovided (e.g., NLOPT, BARON, Minotaur, ...). In what follows we de-

cribe an accurate approximation alternative based on the results

n Section 4 . 

Let P be a polyhedron such that P ⊂ B = { z ∈ R 

d : ‖ z‖ ν ≤ 1 } ,
nd denote by r P = sup ‖ z‖ P =1 ‖ z‖ ν (note that by construction

 P ≤ 1). Observe that r P is the radius of the smallest � ν-ball con-

aining P . In addition, let Q be a polyhedron such that B ⊂ Q, and

enote by R Q = inf ‖ z‖ Q =1 ‖ z‖ ν (note that by construction R Q ≥ 1). In

his case R Q is the radius of the largest � ν-ball contained in Q . 

For a generic polyhedron P , let ε P = (ε 1 ,P , . . . , ε n,P ) 
t , with ε i,P =

 P (x i, −0 , H) , i = 1 , . . . , n . Analogously, let ε � τ = (ε 1 ,� τ , . . . , ε n,� τ ) t ,

ith ε i,� τ = D � τ (x i, −0 , H) , i = 1 , . . . , n . Let δ = 

r 
s ∈ Q with r, s ∈

 \{ 0 } with gcd(r, s ) = 1 . 

The following result states the relationship between the objec-

ive values obtained when using either � τ or the block-norms in-

uced by P and Q to define the residuals in our models. 

heorem 5.1. Let λ1 , . . . , λn ≥ 0 and the aggregation function

(ε 1 , . . . , ε n ) = 

∑ n 
i =1 λi ε 

δ
(i ) 

then: 

(ε P ) ≤ �(ε � τ ) ≤
1 

r δ
P 

�(ε P ) (33) 

1 

R 

δ
Q 

�(ε Q ) ≤ �(ε � τ ) ≤ �(ε Q ) (34) 

roof. By the relations between the norms, it is clear that

 z ‖ P ≥‖ z ‖ ν ≥ r P ‖ z ‖ P . Let H(β) = { z ∈ R 

d : (1 , z t ) β = 0 } . Then, for

ny x ∈ R 

d , the above relationships imply the following inequalities

elating the distances with respect to ‖ · ‖ P 0 -residuals and ‖·‖ τ -

esiduals: 

 P 0 (x −0 , H(β)) = 

| βt x | 
‖ β−0 ‖ P 

≤ | βt x | 
‖ β−0 ‖ ν

≤ d τ (x −0 , H(β)) 

nd 

 τ (x −0 , H(β)) = 

| βt x | 
‖ β−0 ‖ ν

≤ | βt x | 
r P ‖ β−0 ‖ P 

≤ 1 

r P 
D P 0 (x −0 , H(β)) 

Let us consider the aggregation criterion �(ε 1 , . . . , ε n ) =
 n 
i =1 λi ε 

δ
(i ) 

. Its evaluation with respect to the residuals computed

ith the polyhedral norm with unit ball P and the � τ -norm,

amely ε i,P = D P (x i, −0 , H(β)) and ε i,� τ = D τ (x i, −0 , H(β)) for all i =
 , . . . , n, satisfies: 

(ε P ) ≤ �(ε � τ ) ≤
1 

r δ
P 

�(ε P ) . 

his equation proves (33) . 
Next, by definition of Q , it is clear that ‖ z ‖ Q ≤‖ z ‖ ν ≤ R Q ‖ z ‖ Q .
ow, using an argument similar to the one above we conclude

hat 

 Q (x −0 , H(β)) = 

| βt x | 
‖ β−0 ‖ Q 

≥ | βt x | 
‖ β−0 ‖ ν

≥ D τ (x −0 , H(β)) 

= 

| βt x | 
‖ β−0 ‖ ν

≥ | βt x | 
R Q ‖ β−0 ‖ ν

≥ 1 

R Q 

D Q (x −0 , H(β)) . 

rom these inequalities it clearly follows (34) . �

Let P N be a symmetric with respect to the origin polytope with

 vertices, { p 1 , . . . , p N } , inscribed in the � ν hypersphere B = { z ∈
 

d : ‖ z‖ ν = 1 } and let r P N be the radius of the smallest � ν ball cen-

ered at the origin containing P N . Let R Q N = 

1 
r P N 

and denote by Q N 

he R Q N -dilation of P N . By construction P N ⊂ B ⊂ Q N . Hence, for the

lobalizing function �(ε 1 , . . . , ε n ) = 

∑ n 
i =1 λi ε 

δ
(i ) 

, by Theorem 5.1 ,

e get that: 

ax 

{
�(ε P N ) , 

1 

R 

δ
Q N 

�(ε Q N )) 

}
≤ �(ε � τ ) ≤ min 

{
�(ε Q N ) , 

1 

r δ
P N 

�(ε P N ) 

}
Furthermore, by Lemma 4.3 , since Q N is a dilation of P N , both

roblems have the same optimal solutions and �(ε P N ) = r δ
P 
�(ε Q N ) .

ence, 

(ε P N ) ≤ �(ε � τ ) ≤
1 

r δ
P N 

�(ε P N ) . 

It is clear from its definition that r P N determines the approxima-

ion error whenever a � ν-norm is replaced by a polyhedral norm

ith unit ball P N and it can be explicitly computed. 

emma 5.2. Let P = { z ∈ R 

d : a i x ≤ b i , i = 1 , . . . , N} be a polytope,

hen: 

 P = max 
i =1 , ... ,N 

b i 
‖ a i ‖ τ

. 

roof. First, note that r P = sup ‖ z‖ P =1 ‖ z‖ ν = max ‖ z‖ P =1 ‖ z‖ ν by the

ompactness of P . Thus, r P is the � ν-inradius of P . Next, by

angasarian (1999) , the radius of a � ν ball centered at the origin

nd reaching the facet { x ∈ R 

d : a t 
i 
x ≤ b} of P is the � ν projection

f the origin onto that facet, namely 
| b i | 

‖ a i ‖ τ . Hence, r P is the maxi-

um of those distances among the N facets defining P . �

Next, we can obtain from the above discussion a lower bound

or �∗
� τ

, the optimal value of Problem (31) . Indeed, it follows that

∗ ≤ �∗
� τ

≤ 1 

r p 
P 

ρ∗, (35) 

here 

∗ := min 

n ∑ 

j=1 

λ j θ j (36) 

s.t. (8) −(13) 

ε i ≥ | βt x i | , ∀ i = 1 , . . . , n, (37) 

 β−0 ‖ P N = 1 , (38) 

ik ∈ { 0 , 1 } , ω ik ≥ 0 , �k < 0 , 

 ik , t k ≥ 0 , i, k = 1 , . . . , n, �k > 0 

∈ R 

d+1 , ε i ≥ 0 , i = 1 , . . . , n. 
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Table 1 

Estimated models with minisu m criterion in Example 3.3 . 

τ N ̂ β �∗ GoF R P r P Time SD 

1.5 16 (36.87, −1, 0.14) 77.1857 0.6505 0.9848 1.015 1.0 7 . 26 × 10 −5 

80 (36.84, −0.99, 0.14) 77.1324 0.6508263 0.9993 1.0 0 06 1.97 6 . 06 × 10 −6 

320 (36.83, −0.99, 0.14) 77.1117 0.6509203 0.9999 1.0 0 0 0 14.16 9 . 41 × 10 −9 

2 16 (36.87, −1, 0.14) 77.1857 0.6505 0.9807 1.0195 1.04 7 . 87 × 10 −3 

80 (36.19, −0.98, 0.14) 76.3703 0.654276 0.9922 1.0 0 07 2.01 1 . 91 × 10 −7 

320 (36.19, −0.98, 0.14) 76.3700 0.654277 0.9999 1.0 0 0 0 16.53 1 . 64 × 10 −7 

3 16 (34.35, −0.96, 0.16) 74.7283 0.6617 0.9801 1.0202 1.07 4 . 56 × 10 −3 

80 (34.09, −0.95, 0.16) 74.1627 0.66427 0.9992 1.0 0 07 2.04 3 . 50 × 10 −6 

320 (34.08, −0.95, 0.16) 74.1468 0.6643 0.9999 1.0 0 0 0 17.48 4 . 68 × 10 −10 

Fig. 5. Estimated lines for the data in Example 3.3 approximating by a {16, 80, 320}-gon. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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F or a given finite set of input points, the proposed polyhedral

approximation of a � τ -norm may be exact for an adequate choice

of the block-norm. Indeed, this norm must have as fundamental

directions the vectors defining the optimal � τ -projections of each

input point onto the optimal hyperplane. 

Corollary 5.3. For any data set { x 1 , . . . , x n } ⊂ R 

d+1 and any � τ -norm

with 1 < τ < + ∞ there exists a polyhedral norm ‖·‖ B whose unit ball

B has at most 2 n extreme points and such that the optimal values of

the problems (31) and (24) coincide. 

In Love and Morris (1972) the authors propose a measure of

the quality of the approximation of a given norm by another norm.

This measure was defined in order to quantify the approximation

errors when modeling road distances between cities. We adapt this

measure to evaluate the approximation errors induced whenever

the � τ -norm is replaced by the polyhedral norm with unit ball the

polytope P : 

SD τ,P (β; { x 1 , . . . , x n } ) = 

n ∑ 

i =1 

D τ (x i , β) > 0 

(D τ (x i , β) − D P (x i , β)) 2 

D τ (x i , β) 

Example 5.4. Let us consider again the stars data from

Example 3.3 . We run now the models using as aggregation

criterion the overall sum of the residuals ( � = SUM) and the

errors are the � τ projections of the points onto the optimal line,

for τ ∈ {1.5, 2, 3}. The estimations for the aggregation criterion

� = SUM and their goodness of fitting (GoF �, ε ) are shown in

Table 1 . The lines are drawn in Fig. 5 . 

Observe that for this data set, getting high accuracy for the � τ -

norm residual problems is possible using small number of vertices

( N ) in the approximation by polyhedral norms. As expected, in-

creasing the number of vertices improves the accuracy, at the price

of increasing the computation times. 

We also computed the optimal lines for different aggregation

criteria ( �∈ {SUM, MAX, kC, AkC}) with � τ residuals, τ ∈ {1.5, 2, 3},

using the polyhedral approximation approach with N = 480 ver-
ices. The results are shown in Table 2 . The reader may observe

rom these results that the approximation error, although tiny, de-

ends both of the chosen residuals and aggregation criteria. 

Finally, we compare our approximation scheme for � τ residuals,

n this data set, with other available implementations. Orthogo-

al Distance Regression (ODR) is a particular case of our general

ramework where � 2 residuals are chosen and � is the sum of

quares criterion (note that both approaches coincide when the co-

fficient of the dependent coordinate is non zero while such an as-

umption is not imposed in our models). The package pracma in R
ermits to compute ODR by using an approximated iterative proce-

ure (see Boggs and Rogers, 1990 ). The models obtained with both

pproaches are shown in the following table. We observe that, for

his data set, our approach to approximate � τ distances by poly-

edral norms (with N = 320 vertices) has a better performance on

he global error measure of the models (although the models ob-

ained by both methods are almost the same): 

ODR SOS- � 2 (SD =9 . 93 × 10 −11 ) 

Model y = −7 . 05736 x + 35 . 42935 y = −7 . 098062 x + 35 . 60477 

Global Residuals 3.959383 3.662783 

. Experiments 

In this section we report the computational results of the pro-

osed methodology. We combine several aggregation criteria and

orm-based residuals to find different optimal hyperplanes. Our

im is to show the powerfulness of modern mathematical pro-

ramming in its application to the considered problem and to com-

are the behavior of different models rather than gaining insights

nto their statistical meaning, which is beyond the scope of this pa-

er. Our formulations have been coded in Gurobi 6.0 under R and

xecuted in a PC with an Intel Core i7 processor at 2 × 2.40 GHz

nd 4 GB of RAM. Overall, we compared 42 methods which results

rom: 1) the combination of 7 aggregation criteria: SUM (summa-

ion), MAX (maximum), MED (median), kC (summation of the k



V. Blanco et al. / Computers and Operations Research 95 (2018) 172–193 183 

Table 2 

Optimal lines for different criteria and � τ residuals of Example 5.4 . 

� 1.5 � 2 � 3 

SUM Line y = 5 . 92 x − 21 . 1016 y = 6 . 75 x − 24 . 6975 y = 7 x − 25 . 81 

GoF 0.6643 0.6542 0.6509 

SD 3 . 36 × 10 −10 1 . 73 × 10 −10 1 . 65 × 10 −9 

MAX Model y = −3 . 2307 x + 18 . 7757 y = −3 . 2307 x + 18 . 7757 y = −3 . 2307 x + 18 . 7757 

GoF 0.5805 0.5544 0.5381 

SD 4 . 07 × 10 −14 1 . 90 × 10 −12 3 . 85 × 10 −13 

kC Model y = −2 . 8133 x + 16 . 9367 y = −3 . 1756 x + 18 . 5100 y = −4 . 3076 x + 23 . 0334 

GoF 0.5111 0.4790 0.4650 

SD 3 . 51 × 10 −13 7 . 53 × 10 −10 9 . 70 × 10 −10 

AkC Model y = 6 . 75 x − 25 . 0875 y = 6 . 5555 x − 24 . 1533 y = 5 . 175 x − 17 . 7146 

GoF 0.8092 0.82512 0.8217 

SD 7 . 15 × 10 −10 2 . 10 × 10 −9 5 . 49 × 10 −10 

Table 3 

Combinations of chosen aggregation criteria and 

residuals. 

Aggregation criteria Residuals 

SUM 

n ∑ 

i =1 

ε i V 

MAX max 
i =1 , ... ,n 

ε i � 1 

MED median (ε 1 , . . . , ε n ) � ∞ 

kC 

� 0 . 5 n � ∑ 

i =1 

ε (i ) � 3 
2 

AkC 

n ∑ 

i = � 0 . 5 n � +1 

ε (i ) � 2 

SOS 

n ∑ 

i =1 

ε 2 i � 3 

1.5SUM 

n ∑ 

i =1 

ε 
3 
2 

i 

l  

a  

d  

�

 

T  

m  

s

 

d  

o  

m  

T  

g

6

 

f  

M  

s  

i  

m  

R  

g

x

w  

a

 

G  

t

 

b  

p  

t  

t  

p  

h  

3  

d

 

f  

o  

t  

l  

t  

Y  

w

r  

n  

(  

V  

d  

r

 

(  

t  

a  

fi  

fi

6

 

d  

t  

(  

fl  

t  

p

(  

s

 

w  

e

6

 

T  

u  

t  
argest), AkC (summation of the k smallest), SOS (sum of squares)

nd 1.5SUM (sum of residuals raised to the power of 3 
2 ); and 2) six

ifferent modes to measure the residuals: V (vertical distance) and

 τ ( � τ -norm distance for τ = 1 , 3 
2 , 2 , 3 , + ∞ ). See Table 3 . 

All experiments were run with a CPU time limit of one hour.

he necessary computing times depend very much of the chosen

odel and, for our instances, range from a few seconds, for the

implest ones, to close to one hour, for the most difficult ones. 

We tested the models on two different types of datasets: ran-

omly generated data and a real-word benchmark dataset. The first

ne will allows us to analyze the performance of the different

odels in terms of their ability to detect the trend of the dataset.

he second one permits to check whether the use of different ag-

regation criteria and residuals is useful in practice. 

.1. Synthetic experiments 

The first set of results is built on randomly generated points

ollowing a similar scheme to those proposed in Bertsimas and

azumder (2014) . We generated n = 100 data points in dimen-

ion d ∈ {2, 4}, { x 1 , . . . , x n } ⊆ R 

d+1 as follows. Each x ik follows an

ndependent and identically distributed Gaussian distribution with

ean 0 and standard deviation 100. We fix βt = (0 , 1 , . . . , 1) ∈
 

d+1 . The last coordinate, x d , is chosen as the response and we

enerate it as: 

 id = −
d−1 ∑ 

k =1 

x ik + u i , ∀ i = 1 , . . . , n, 

here u i is also generated as a Gaussian distribution with mean 0

nd standard deviation 10. 

Then, 15% of the data are now corrupted by adding an extra

aussian term (with mean 0 and standard deviation 500) to: (1) all

he components except the last one or (2) to the last coordinate. 
We get the fitting model for each one of the considered com-

inations (overall 42 models). Due to limitation of space in this

aper, the complete results are available as a supplementary elec-

ronic material (see Appendix A ). For each model we report: 1)

he goodness of fitting index GoF, 2) the percentage of the sam-

le data which are contained in a strip delimited by two parallel

yperplanes to y = 

̂ βx with (orthogonal) distance ε = 10 (%), and

) the width of the strip that is necessary to include 90% of the

ata ( ε90 ). 

We conclude from these results that, in general, a better per-

ormance is observed in all the methods when the corrupted co-

rdinate is the dependent one ( Y ), as compared with introducing

he perturbation on the independent coordinate ( X ). In particu-

ar, the use of the SUM, the 1.5SUM and the kC criteria (for ver-

ical distance residuals) empirically implies better models in the

 -corrupted case. Although slightly better, almost similar results

ere obtained for models based on AkC, MEDIAN and kC (for � τ
esiduals) due to their stability against extremal observations. Fi-

ally, we also point out that for the X -corrupted case, all models

except the AkC) coincide under the use of residuals measured by

, � 1 and � ∞ 

. This is not the case for the results with Y -corrupted

ata, where equal or similar models were obtained for all the � τ -

esiduals. 

Similar conclusions can be derived from the multivariate case

 d = 4 ), except that in this situation there are no coincidences be-

ween the models obtained with different combinations of criteria

nd residuals. Furthermore, the convenience of using goodness of

tting measures which are not criterion/residual dependent is con-

rmed. 

.2. Data: Durbin–Watson 

We also performed some experiments over the classical real

ata sample used in Durbin and Watson (1951) . The data aims

o analyze the annual consumption of spirits from 1870 to 1938

 n = 69 ) from the incomes and the relative price of spirits (de-

ated by a cost-of-living index). Hence, the variables observed in

his data sets are the logarithms (the coefficients are then inter-

reted in terms of percent change) of the following measures: X 1 

Real income per head), X 2 (Relative price of spirits) and X 3 (Con-

umption of spirits per head). 

For illustrative purposes, we analyze both the global model

ith the three variables ( d = 3 ) and the bivariate model consid-

ring X 1 and X 3 and obviating X 2 ( d = 2 ). 

.2.1. Bivariate model 

For the case d = 2 , the obtained hyperplanes are detailed in

able 4 and they are drawn in Fig. 6 . Note that the methods that

se vertical distance residuals (V) were not able to capture the ac-

ual behavior of the consumption with respect to the incomes. Fur-
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Table 4 

Estimations for the bidimensional Durbin–Watson’s dataset. 

V � 1 � ∞ 

SUM (4 . 0898 , −1 . 1454 , −1) (10 . 8840 , −4 . 6184 , −1) (8 . 9764 , −3 . 6797 , −1) 

MAX (1 . 6986 , −0 . 0196 , −1) (1 . 6986 , −0 . 0196 , −1) (−0 . 5963 , 1 . 1530 , −1) 

SOS (2 . 9993 , −0 . 6309 , −1) (13 . 5934 , −6 . 0703 , −1) (7 . 0978 , −2 . 7353 , −1) 

1.5SUM (4 . 0730 , −1 . 1566 , −1) (10 . 6113 , −4 . 5067 , −1) (7 . 9926 , −3 . 1851 , −1) 

kC (5 . 5288 , −1 . 9236 , −1) (8 . 7033 , −3 . 5303 , −1) (7 . 6654 , −2 . 9977 , −1) 

AkC (2 . 7467 , −0 . 4031 , −1) (17 . 1272 , −7 . 6311 , −1) (18 . 4349 , −8 . 2833 , −1) 

MED (2 . 4167 , −0 . 2310 , −1) (28 . 0156 , −13 . 0469 , −1) (23 . 4462 , −10 . 7748 , −1) 

� 1.5 � 2 � 3 

SUM (10 . 8840 , −4 . 6184 , −1) (10 . 8746 , −4 . 6138 , −1) (9 . 8917 , −4 . 1344 , −1) 

MAX (1 . 6986 , −0 . 0196 , −1) (−0 . 5963 , 1 . 1530 , −1) (−0 . 5963 , 1 . 1530 , −1) 

SOS (13 . 1400 , −5 . 8376 , −1) (10 . 9561 , −4 . 7162 , −1) (8 . 7832 , −3 . 6006 , −1) 

1.5SUM (10 . 4466 , −4 . 4233 , −1) (9 . 6 86 8 , −4 . 0399 , −1) (8 . 9821 , −3 . 6851 , −1) 

kC (8 . 0130 , −3 . 1750 , −1) (8 . 0455 , −3 . 1914 , −1) (8 . 5389 , −3 . 4427 , −1) 

AkC (13 . 9827 , −6 . 0670 , −1) (21 . 0745 , −9 . 6064 , −1) (20 . 6955 , −9 . 4349 , −1) 

MED (24 . 0656 , −11 . 0819 , −1) (6 . 4510 , −2 . 4601 , −1) (28 . 0150 , −13 . 0466 , −1) 

Fig. 6. Estimated lines for the data in Durbin and Watson (1951) . 

 

 

 

 

 

 

 

 

 

Table 5 

Marginal variations for each of the models. 

V � 1 � ∞ � 1.5 � 2 � 3 

SUM −1.1455 0 −0.7863 −0.0464 −0.2070 −0.4395 

MAX −0.0196 −0.0196 0.5355 −0.0196 0.4 94 9 0.5151 

SOS −0.6309 0 −0.7322 −0.0291 −0.2029 −0.4597 

1.5SUM −1.1566 0 −0.7610 −0.0505 −0.2332 −0.4564 

kC −1.9236 0 −0.7498 −0.0961 −0.2853 −0.4660 

AkC −0.4032 0 −0.8922 −0.0270 −0.1029 −0.3147 

MED −0.2310 0 −0.9150 −0.0081 −0.3488 −0.2711 
thermore, the MAX criterion seems to fail for any choice of resid-

uals, since it tries to accommodate the unique outlier point that

exists in the data set. The rest of the hyperplanes have a similar

behavior. In order to analyze the differences between these mod-

els we also report, in Table 5 , the marginal variations of each one

of the models (according to Lemma 2.1 ). 

Observe that, when the � 1 residuals are considered, all except

the MAX criterion provide a 0 marginal variation. This pattern

can be explained as a result of Lemma 2.2 and the fact that the

� -norm unit ball in R 

2 has extreme points { ± (0, 1), ± (1, 0)}.
1 
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Table 6 

Summary of k-fold cross validations experiments for the bidimensional Durbin–Watson’s dataset. 

V � 1 � ∞ � 1.5 � 2 � 3 

SUM min ε90 0.1590 0.0560 0.0702 0.0491 0.0459 0.0560 

max ε90 0.3049 0.1645 0.14 4 4 0.1477 0.1480 0.1480 

median ε90 0.2366 0.0983 0.0923 0.0881 0.0828 0.0983 

ε̄ 90 0.2330 0.1027 0.0982 0.0958 0.0959 0.1021 

MAX min ε90 0.1262 0.1274 0.1262 0.1262 0.1262 0.1274 

max ε90 0.3955 0.3955 0.3663 0.3663 0.3663 0.3955 

median ε90 0.3664 0.3664 0.3621 0.3621 0.3621 0.3664 

ε̄ 90 0.3337 0.3338 0.3222 0.3222 0.3222 0.3338 

SOS min ε90 0.1372 0.0844 0.0566 0.0568 0.0633 0.0793 

max ε90 0.4072 0.1264 0.1163 0.1202 0.1235 0.1253 

median ε90 0.2878 0.0962 0.0983 0.0879 0.0961 0.0961 

ε̄ 90 0.2980 0.1005 0.0973 0.0900 0.0905 0.0983 

1.5SUM min ε90 0.1437 0.0476 0.0488 0.0524 0.0499 0.0478 

max ε90 0.3091 0.1353 0.1199 0.1254 0.1308 0.1334 

median ε90 0.2260 0.0834 0.0852 0.0910 0.0885 0.0841 

ε̄ 90 0.2349 0.0922 0.0872 0.0869 0.0884 0.0917 

kC min ε90 0.1236 0.0414 0.0655 0.0495 0.0480 0.0412 

max ε90 0.2843 0.1220 0.1147 0.1163 0.1185 0.1219 

median ε90 0.1281 0.0837 0.0837 0.0851 0.0851 0.0855 

ε̄ 90 0.1511 0.0827 0.0834 0.0800 0.0809 0.0821 

akC min ε90 0.4482 0.0421 0.0429 0.0367 0.0892 0.0484 

max ε90 0.6677 0.2039 0.1853 0.2122 0.4654 0.1981 

median ε90 0.5162 0.1722 0.1296 0.1605 0.1534 0.1466 

ε̄ 90 0.5282 0.1434 0.1338 0.1417 0.1914 0.1373 

MED min ε90 0.4275 0.1182 0.1147 0.0979 0.1182 0.0615 

max ε90 0.6375 0.2170 0.4612 0.2203 0.2137 0.2101 

median ε90 0.5503 0.1712 0.1761 0.1701 0.1393 0.1565 

ε̄ 90 0.5406 0.1651 0.2093 0.1614 0.1501 0.1478 
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ence, 

(β) = 

{ 

1 if β3 = max {| β1 | , | β3 |} , 
−1 if β3 = − max {| β1 | , | β3 |} , 
0 otherwise. 

hus, the marginal variation of X 1 with respect to X 3 is zero iff

 β1 | = max {| β1 | , | β3 |} , being then | β3 | < | β1 |. Observe that the lat-

st implies that if the fitting line is rewritten in the form X 3 =
0 + γ1 X 1 , the absolute value of the slope of the line, | γ 1 |, is

reater than 1, being then the percent decreasing (or increasing)

f the consumption ( X 3 ) in term of the incomes ( X 1 ), more than

00%. 

In order to validate and analyze the stability of the com-

uted hyperplanes we perform a k -fold cross validation scheme

 Stone, 1974 ) to the data set. Such a method consists of randomly

artitioning the sample into k folds of similar size, S 1 , . . . , S k . For

ach j ∈ { 1 , . . . , k } , each optimal hyperplane is computed using the

oints in 

⋃ 

i � = j S i and S j is used to validate the results. In our case,

e partitioned the data into k = 7 folds, each of them with 10 data,

xcept one with 9 points. In Table 6 we summarize the results ob-

ained with this experiment. We report: the maximum, minimum,

edian and mean width of the strips that are necessary to cover

he 90% of the (validation) data for the seven runs. 

From the above results, we observe that the models that use

ertical distance residuals need, in general, larger strips to cover

he 90% of the points. The strips are particularly large for the ME-

IAN criterion, where the widest strips were obtained. This con-

lusion is justified since the quantile criteria accommodate a single

oint, but do not take into account the deviations to the remain-

ng elements in the data (apart from the ordering in the residuals).

lso, for the same reason, the conservative MAX criterion makes

he models to require wider strips. The residuals that produce the

mallest range between the maximum and minimum length of the

trips, are the � 1 , � 1.5 , and � 3 ; and for these type of residuals the

 -centrum ( k C) criterion gets the best results. 
To illustrate the quality of the optimal hyperplanes, in Fig. 7 we

how the values of the consumptions versus the actual consump-

ions for the first random fold in the experiments (in the validation

ample that was not used to compute the hyperplanes). 

The conclusions are that the models that use V and � ∞ 

-based

esiduals do not fit well to the actual trend of the validation data.

he same conclusion also applies to the models that use the MAX

riterion. On the other hand, all the models based on � τ -residual

eem to fit quite-well to the data. As expected the k C and A k C cri-

eria, which are known to be robust against extremal observations,

ctually capture the main information about the trend. 

.2.2. Complete models 

We also performed the same experiments using all the vari-

bles: X 1 (incomes), X 2 (prices) and X 3 (consumptions). The op-

imal hyperplanes are shown in Table 7 (since the coefficients are

on zero they were divided by −β3 resulting in simplified models

n the form X 3 = β0 + β1 X 1 + β2 X 2 .) 

The summary of the results of the k -fold cross validation

cheme (where the dataset was partitioned exactly as in the bivari-

te case) is shown in Table 8 . Fig. 8 shows the values of the con-

umptions versus the actual consumptions for the first random fold

n the experiments. From the results, one can observe that includ-

ng all the variables in the model reduces the differences among

he different methods. In this case, the consumption seems to be

ell linearly described by the incomes and prices. This conclusion

s supported both by the projection and by the summary of k -cross

alidation experiments. The exceptionally bad performance of the

AX criterion in the bivariate case, is now as good as the rest of

he criteria. In addition, the inclusion of prices in the model fixes

he, in most cases, senseless signs of the coefficients in the bivari-

te models in Table 5 . One can observe that in those cases an in-

rease of the incomes would predict a decrease of the consump-

ions. 
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Fig. 7. Responses in the dependent variable by residuals for the bivariate case (SUM: red, MAX: blue, SOS: green, 1.5SUM: yellow, kC: black, AkC: orange, MEDIAN: gray). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 7 

Estimations for the Durbin–Watson’s dataset. 

V � 1 � ∞ 

SUM (4 . 4817 , 0 . 0696 , −1 . 3374 , −1) (4 . 555 , 0 . 0587 , −1 . 3623 , −1) (4 . 1367 , 0 . 3502 , −1 . 4305 , −1) 

MAX (4 . 5227 , 0 . 0646 , −1 . 3519 , −1) (4 . 6159 , −0 . 013 , −1 . 3273 , −1) (4 . 1355 , 0 . 5086 , −1 . 5758 , −1) 

SOS (3 . 9725 , 0 . 0331 , −1 . 0692 , −1) (4 . 404 , 0 . 1369 , −1 . 3881 , −1) (4 . 404 , 0 . 1369 , −1 . 3881 , −1) 

1.5SUM (4 . 404 , 0 . 1369 , −1 . 3881 , −1) (4 . 404 , 0 . 1369 , −1 . 3881 , −1) (4 . 404 , 0 . 1369 , −1 . 3881 , −1) 

kC (4 . 4159 , 0 . 0288 , −1 . 2753 , −1) (4 . 4905 , 0 . 0635 , −1 . 3425 , −1) (4 . 3334 , 0 . 1325 , −1 . 3317 , −1) 

AkC (4 . 4355 , 0 . 0655 , −1 . 3183 , −1) (4 . 4521 , 0 . 0585 , −1 . 3197 , −1) (4 . 4688 , 0 . 0535 , −1 . 323 , −1) 

MED (4 . 4288 , 0 . 0488 , −1 . 2979 , −1) (4 . 5075 , 0 . 0634 , −1 . 3476 , −1) (4 . 3559 , 0 . 1431 , −1 . 3489 , −1) 

� 1.5 � 2 � 3 

SUM (4 . 4 4 45 , 0 . 0698 , −1 . 3242 , −1) (4 . 472 , 0 . 0633 , −1 . 331 , −1) (4 . 4922 , 0 . 0619 , −1 . 3386 , −1) 

MAX (4 . 4155 , 0 . 0352 , −1 . 2797 , −1) (4 . 3938 , 0 . 1107 , −1 . 3377 , −1) (4 . 2655 , 0 . 1691 , −1 . 3326 , −1) 

SOS (4 . 3498 , 0 . 1131 , −1 . 3201 , −1) (4 . 3498 , 0 . 1131 , −1 . 3201 , −1) (4 . 3498 , 0 . 1131 , −1 . 3201 , −1) 

1.5SUM (4 . 2123 , 0 . 4308 , −1 . 5386 , −1) (4 . 0853 , 0 . 4429 , −1 . 4891 , −1) (3 . 6048 , 0 . 7761 , −1 . 5744 , −1) 

kC (5 . 2647 , −0 . 6758 , −1 . 0312 , −1) (3 . 5719 , 1 . 1094 , −1 . 8642 , −1) (3 . 4912 , 1 . 0623 , −1 . 7796 , −1) 

AkC (4 . 1061 , 0 . 5015 , −1 . 551 , −1) (4 . 1579 , 0 . 467 , −1 . 5434 , −1) (4 . 2963 , 0 . 3239 , −1 . 4761 , −1) 

MED (4 . 3576 , 0 . 2689 , −1 . 4559 , −1) (4 . 0772 , 0 . 4066 , −1 . 4415 , −1) (76 . 3635 , 25 . 0913 , −61 . 4268 , −1) 
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6.3. Scalability 

Finally, we would like to add some comments on the scalability

of the proposed methods. As observed from the computational ex-

periments, our formulations work well in the range of several hun-

dreds of points regardless of the dimension of the space (within

a reasonable limit). This is partly induced by the use of sortings

in the aggregation criteria. Moving up to the range of thousands

requires some further extensions by aggregation techniques (see

Francis et al., 20 0 0 ) that are beyond the scope of this manuscript.

In spite of that, we have included an illustrative example with sev-

eral thousands of points. Technical details on the accuracy of these

techniques will be the subject of a forthcoming paper. 

Example 6.1. We have randomly generated 20 0 0 points in R 

2 with

the same setting that in Subsection 6.1 , by corrupting the last coor-
inate ( X 2 ). The points are drawn in the right picture of Fig. 9 and

re available at http://bit.ly/data20 0 0 . In order to show the scala-

ility of the proposed methodology we have implemented a ran-

omized aggregation technique based on Francis et al. (20 0 0) to

he computationally hardest models, i.e., those where the aggre-

ation criterion is �≡ A k C (with k = � 0 . 5 n � ) and residuals mea-

ured with vertical distance V , � 1 -norm and � 2 -norm. We report in

ig. 9 (left table) the estimated coefficients for the three models as

ell as the best objective values found and the computation times

in seconds) needed to obtain these solutions. As can be observed

n Fig. 9 (right), the solutions that result with the aggregation tech-

ique have a good performance in terms of the geometric fitting.

hese techniques have been proved to find accurate solutions in

easonable computing times, so the models proposed in this paper

re applicable to real-world datasets. 

http://bit.ly/data2000
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Table 8 

Summary of k-fold cross validations experiments for the Durbin–Watson’s dataset. 

V � 1 � ∞ � 1.5 � 2 � 3 

SUM min ε90 0.0369 0.0388 0.0315 0.0380 0.0346 0.0347 

max ε90 0.0735 0.0741 0.0832 0.0743 0.0743 0.0732 

median ε90 0.0629 0.0627 0.0647 0.0625 0.0625 0.0626 

ε90 0.0573 0.0598 0.0616 0.0580 0.0567 0.0593 

MAX min ε90 0.0562 0.0515 0.0515 0.0515 0.0515 0.0515 

max ε90 0.0807 0.0762 0.0760 0.0760 0.0760 0.0762 

median ε90 0.0701 0.0607 0.0644 0.0644 0.0607 0.0607 

ε90 0.0678 0.0624 0.0641 0.0641 0.0624 0.0624 

SOS min ε90 0.0255 0.0362 0.0310 0.0321 0.0327 0.0327 

max ε90 0.0656 0.0683 0.0691 0.0678 0.0675 0.0675 

median ε90 0.0586 0.0583 0.0568 0.0586 0.0581 0.0582 

ε90 0.0547 0.0541 0.0537 0.0543 0.0528 0.0529 

1.5SUM min ε90 0.0262 0.0342 0.0292 0.0308 0.0314 0.0316 

max ε90 0.0685 0.0709 0.0713 0.0691 0.0703 0.0703 

median ε90 0.0617 0.0563 0.0587 0.0559 0.0556 0.0558 

ε90 0.0553 0.0547 0.0546 0.0527 0.0531 0.0532 

kC min ε90 0.0269 0.0368 0.0265 0.0251 0.0272 0.0272 

max ε90 0.0650 0.0700 0.0698 0.0709 0.0709 0.0700 

median ε90 0.0588 0.0564 0.0559 0.0559 0.0569 0.0571 

ε90 0.0514 0.0549 0.0536 0.0534 0.0538 0.0535 

akC min ε90 0.0349 0.0338 0.0360 0.0305 0.0256 0.0604 

max ε90 0.1042 0.1041 0.1017 0.3524 0.1100 0.1303 

median ε90 0.0906 0.0888 0.0820 0.0885 0.0676 0.0931 

ε90 0.0815 0.0799 0.0778 0.1115 0.0713 0.0923 

MED min ε90 0.0342 0.0329 0.0346 0.0332 0.0429 0.0270 

max ε90 0.1064 0.0994 0.0997 0.1102 0.3410 0.3266 

median ε90 0.0709 0.0872 0.0894 0.0649 0.0844 0.0714 

ε90 0.0738 0.0784 0.0794 0.0671 0.1215 0.1012 

Fig. 8. Responses in the dependent variable by residuals for the d = 3 case (SUM: red, MAX: blue, SOS: green, 1.5SUM: yellow, kC: black, AkC: orange, MEDIAN: gray). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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. Conclusions and further research 

This paper generalizes previous attempts for modeling the

roblem of fitting hyperplanes to a given set of points. This ap-

roach allows for the combination of distance-based residuals ag-
regated by generalized ordered weighted averaging criteria. In

ddition, we provide unified mathematical programming formu-

ations for all those models that allow one to use off-the-shelf

olvers to handle the resulting problems. Two important particu-

ar cases of residuals are analyzed in more detail, namely those
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Fig. 9. Estimations for the instance of Example 6.1 . 
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induced by block-and- � τ norms for τ ≥ 1. A new goodness of fit-

ting measure is also introduced for this framework, which extends

the classical coefficient of determination in least sum of squares

fitting with vertical distances. Some illustrative computational ex-

periments run in Gurobi under R are reported in order to illustrate

and validate the new methodology for computing optimal fitting

hyperplanes. 

The results in this paper admit several extensions, still applying

similar tools. Among them, we mention the study of the statisti-

cal analysis of the generalized noise terms, on the original data,

that induce general norms residuals. In particular, we have con-

ducted some preliminary tests to analyze the empirical distribu-

tion of hexagonal (see Example 4.5 ) and � 2 -norm based errors

used in some of our computational experiments. We have com-

pared whether the errors induced by the LSS criterion with the

usual vertical distance and the sum criterion with the hex-and-

� 2 -norms come from the same statistical distribution. Using the

Mann–Whitney U test, to compare if two samples are identically

distributed, we conclude that the three types of residuals come

from the same distribution (the three null hypotheses cannot be

rejected at a significance level of 5%). We have also raised the is-

sue of regularization, i.e., adding constraints to overcome ill-posed

data set, as well as the simultaneous computation of several (more
han one) hyperplanes to a given data set such that each single

oint is “allocated” to its closest model , as in Bradley and Mangasar-

an (20 0 0) . Another interesting extension is the use of mathemati-

al programming tools to fit hyperplanes to binary data. The usual

echniques to estimate those models are based on likelihood esti-

ation since least squares estimation is known to get poor results

n this type of data. Here our proposal will fit in a natural way

nd will deserve further attention. 
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Table A.9 

Results for bidimensional experiments corrupting the X variables. 

V � 1 � ∞ 

SUM 

̂ β (−1 . 9587 , 0 . 3011 , 1) (1 . 9587 , −0 . 3011 , −1) (0 . 4240 , −0 . 9403 , −1) 

GoF 0.1456 0.1456 0.5342 

% 8% 8% 65% 

ε90 141.2995 141.2995 87.0871 

MAX ̂ β (10.9038, 0.1571, 1) (10.9038, 0.1571, 1) (10.9038, 0.1571, 1) 

GoF 0.1484 0.1484 0.2641 

% 10% 10% 10% 

ε90 158.9295 158.9295 158.9295 

SOS ̂ β (−3 . 1753 , 0 . 1860 , 1) (3 . 1753 , −0 . 1860 , −1) (−1 . 8549 , 0 . 2858 , 1) 

GoF 0.2261 0.2261 0.4925 

% 8% 8% 9% 

ε90 157.7177 157.7177 143.1279 

1.5SUM 

̂ β (−3 . 5386 , 0 . 2112 , 1) (3 . 5397 , −0 . 2112 , −1) (0 . 3967 , −0 . 4136 , −1) 

GoF 0.1812 0.1812 0.4499 

% 8% 8% 8% 

ε90 152.361 152.3626 127.4389 

kC ̂ β (−3 . 0188 , 0 . 2328 , 1) (−3 . 0188 , 0 . 2328 , 1) (0.3503, 0.9091, 1) 

GoF 0.1226 0.1226 0.4275 

% 8% 8% 60% 

ε90 150.5599 150.5599 85.1974 

AkC ̂ β (5.8180, 0.7718, 1) (2.2956, 0.7734, 1) (2.6795, 0.9874, 1) 

GoF 0.6735 0.9040 0.9758 

% 29% 34% 70% 

ε90 77.4723 74.8420 92.8187 

MED ̂ β (6.1846, 0.7795, 1) (6.1842, 0.7795, 1) (1.3314, 0.9890, 1) 

GoF 0.7021 0.8690 0.9741 

% 31% 31% 70% 

ε90 78.4775 78.4772 91.9773 

� 1.5 � 2 � 3 

SUM 

̂ β (−0 . 2603 , −0 . 9299 , −1) (−0 . 2603 , −0 . 9299 , −1) (−0 . 2603 , −0 . 9299 , −1) 

GoF 0.4133 0.3417 0.2615 

% 62% 62% 62% 

ε90 86.7791 86.7791 86.7791 

MAX ̂ β (−10 . 9038 , −0 . 1571 , −1) (−10 . 9038 , −0 . 1571 , −1) (10.9038, 0.1571, 1) 

GoF 0.1821 0.1588 0.1495 

% 10% 10% 10% 

ε90 158.9295 158.9295 158.9295 

SOS ̂ β (2 . 4728 , −0 . 2391 , −1) (−2 . 8551 , 0 . 2102 , 1) (−3 . 1181 , 0 . 1903 , 1) 

GoF 0.3163 0.2552 0.2295 

% 8% 8% 8% 

ε90 149.8204 151.9362 156.6873 

1.5SUM 

̂ β (3 . 4138 , −0 . 2225 , −1) (3 . 0670 , −0 . 2704 , −1) (1 . 4864 , −0 . 3260 , −1) 

GoF 0.1853 0.2145 0.2799 

% 8% 9% 7% 

ε90 149.6913 145.969 135.7776 

kC ̂ β (−2 . 6422 , 0 . 2474 , 1) (−0 . 2632 , −0 . 9011 , −1) (−0 . 3503 , −0 . 9091 , −1) 

GoF 0.1263 0.1913 0.2791 

% 9% 57% 60% 

ε90 147.9623 84.4867 85.1974 

AkC ̂ β (−0 . 0741 , 0 . 9357 , 1) (2.2028, 1.0126, 1) (−0 . 9506 , 0 . 9930 , 1) 

GoF 0.9468 0.9576 0.9645 

% 64% 70% 65% 

ε90 86.9840 94.2569 91.5147 

MED ̂ β (1 . 5779 , −0 . 9545 , −1) (2.9207, 1.0139, 1) (0.2899, 0.9792, 1) 

GoF 0.9530 0.9611 0.9655 

% 63% 69% 65% 

ε90 88.5178 94.8548 90.5271 
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Table A.10 

Results for bidimensional experiments corrupting the Y variables. 

V � 1 � ∞ 

SUM 

̂ β (−0 . 4324 , −1 . 0070 , −1) (−2 . 7476 , −1 . 1156 , −1) (−0 . 8817 , −1 . 0333 , −1) 

GoF 0.5226 0.5464 0.7637 

% 72% 57% 73% 

ε90 158.3495 144.4862 154.9621 

MAX ̂ β (164 . 40 , 1 . 95 , −1) (−131 . 52 , −7 . 30 , −1) (−131 . 52 , −7 . 30 , −1) 

GoF 0.0109 0.7575 0.7867 

% 5% 6% 6% 

ε90 266.337 144.6019 144.6019 

SOS ̂ β (−19 . 4780 , 0 . 9765 , 1) (24 . 3778 , −3 . 9704 , −1) (−21 . 8989 , 2 . 4558 , 1) 

GoF 0.2459 0.8055 0.8896 

% 24% 12% 14% 

ε90 176.2108 119.0515 108.3728 

1.5SUM 

̂ β (2 . 2257 , −0 . 9993 , −1) (8 . 1241 , −2 . 8635 , −1) (4 . 2013 , −1 . 5531 , −1) 

GoF 0.3894 0.6583 0.8111 

% 72% 15% 24% 

ε90 161.1331 114.1084 107.9904 

kC ̂ β (−0 . 6995 , −0 . 9989 , −1) (4 . 8095 , −1 . 6540 , −1) (−1 . 0107 , −1 . 0744 , −1) 

GoF 0.4422 0.4969 0.7265 

% 71% 23% 67% 

ε90 159.1129 100.6695 150.2014 

AkC ̂ β (10 . 0084 , −0 . 9838 , −1) (−1 . 3062 , −1 . 0398 , −1) (−1 . 2815 , −0 . 9942 , −1) 

GoF 0.7526 0.9914 0.9961 

% 53% 70% 72% 

ε90 168.5344 153.9189 159.2534 

MED ̂ β (8 . 6545 , −0 . 9641 , −1) (−0 . 8028 , −1 . 0379 , −1) (−4 . 3252 , −1 . 0113 , −1) 

GoF 0.8478 0.9894 0.9947 

% 57% 73% 69% 

ε90 170.0131 154.4 84 9 155.1026 

� 1.5 � 2 � 3 

SUM 

̂ β (−0 . 9890 , −1 . 0403 , −1) (−0 . 9890 , −1 . 0403 , −1) (−0 . 9890 , −1 . 0403 , −1) 

GoF 0.6250 0.6658 0.7023 

% 70% 70% 70% 

ε90 154.0857 154.0857 154.0857 

MAX ̂ β (−131 . 52 , −7 . 30 , −1) (−131 . 52 , −7 . 30 , −1) (−131 . 52 , −7 . 30 , −1) 

GoF 0.7577 0.7598 0.7654 

% 6% 6% 6% 

ε90 144.6019 144.6019 144.6019 

SOS ̂ β (24 . 0474 , −3 . 7686 , −1) (23 . 2040 , −3 . 2532 , −1) (22 . 5246 , −2 . 8381 , −1) 

GoF 0.8077 0.8195 0.8412 

% 13% 13% 13% 

ε90 118.4519 119.827 115.0321 

1.5SUM 

̂ β (8 . 2797 , −2 . 4830 , −1) (5 . 8395 , −1 . 9194 , −1) (4 . 7010 , −1 . 6953 , −1) 

GoF 0.6667 0.6976 0.7384 

% 14% 19% 23% 

ε90 114.0191 102.4955 97.65193 

kC ̂ β (−1 . 0107 , −1 . 0744 , −1) (−1 . 0107 , −1 . 0744 , −1) (−0 . 8903 , −1 . 0744 , −1) 

GoF 0.5665 0.6135 0.6556 

% 67% 67% 66% 

ε90 150.2014 150.2014 150.2834 

AkC ̂ β (−2 . 6754 , −1 . 0658 , −1) (−2 . 7011 , −0 . 9640 , −1) (−3 . 9149 , −1 . 0070 , −1) 

GoF 0.9901 0.9910 0.9915 

% 69% 68% 69% 

ε90 150.0206 161.8515 155.8964 

MED ̂ β (−0 . 8019 , −1 . 0319 , −1) (−2 . 6799 , −1 . 0 0 09 , −1) (−1 . 5141 , −1 . 0345 , −1) 

GoF 0.9911 0.9924 0.9928 

% 74% 70% 70% 

ε90 155.184 157.4707 154.3846 
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Table A.11 

Results for experiments for d = 4 and corrupting the X variables. 

V � 1 � ∞ 

SUM 

̂ β (8 . 7754 , 0 . 2361 , 0 . 1242 , −0 . 0645 , 1) (−167 . 9861 , 32 . 8678 , −11 . 1472 , −15 . 3593 , 1) (19 . 6624 , 1 . 9411 , 1 . 4336 , −2 . 6949 , 1) 

GoF 0.0369 0.3527 0.7030 

% 8% 9% 15% 

ε90 285.1339 172.616 166.2396 

MAX ̂ β (11 . 2676 , −0 . 8055 , 0 . 4093 , 0 . 3802 , 1) (95 . 4943 , −2 . 3074 , −2 . 7088 , 4 . 5984 , 1) (76 . 9688 , −2 . 1455 , −2 . 9597 , 4 . 6480 , 1) 

GoF 0.1200 0.5037 0.7852 

% 2% 9% 6% 

ε90 243.9038 160.86 164.3572 

SOS ̂ β (2 . 7637 , 0 . 1306 , 0 . 06391 , −0 . 0111 , 1) (−35 . 0079 , −17 . 4180 , 5 . 1138 , 8 . 8243 , −1) (14 . 4492 , 2 . 3985 , 1 . 8254 , −3 . 4712 , 1) 

GoF 0.0409 0.5787 0.9085 

% 6% 9% 8% 

ε90 285.0815 170.37 165.6255 

1.5SUM 

̂ β (3 . 1382 , 0 . 1714 , 0 . 0663 , −0 . 03521) (21 . 9152 , −18 . 9245 , 5 . 5144 , 9 . 6284 , −1) (−20 . 1562 , −2 . 0728 , −1 . 5407 , 2 . 94 4 4 , −1) 

GoF 0.0418 0.4776 0.8349 

% 7% 8% 14% 

ε90 282.7383 167.7096 165.9725 

kC ̂ β (−6 . 8937 , 0 . 1108 , 0 . 0744 , −0 . 0183 , 1) (−34 . 1432 , −15 . 4977 , 4 . 3066 , 7 . 9523 , −1) (5 . 0421 , 2 . 0898 , 1 . 4381 , −2 . 8638 , 1) 

GoF 0.0258 0.3487 0.6984 

% 8% 8% 15% 

ε90 276.4327 168.3023 169.65 

AkC ̂ β (−29 . 5486 , 0 . 5489 , 0 . 2119 , 0 . 2342 , 1) (11 . 5813 , 2 . 8055 , −0 . 1579 , 0 . 1805 , 1) (2.7269, 1.0225, 0.9985, 1.0072, 1) 

GoF 0.1544 0.8716 0.9950 

% 12% 5% 82% 

ε90 304.1316 306.9669 496.6216 

MED ̂ β (11.3163, 0.5095, 0.5018, 0.0667, 1) (15 . 2913 , −1 . 38181 , −0 . 1062 , 9 . 6624 , 1) (2.3001, 1.0447, 1.0149, 1.0033, 1) 

GoF 0.3706 0.8308 0.9941 

% 9% 11% 80% 

ε90 283.331 251.5948 497.3323 

� 1.5 � 2 � 3 

SUM 

̂ β (−25 . 3339 , 7 . 2803 , 0 . 3850 , −6 . 5208 , 1) (−25 . 3339 , 7 . 2803 , 0 . 3850 , −6 . 5208 , 1) (−48 . 9741 , −2 . 5251 , −1 . 5173 , 3 . 4889 , −1) 

GoF 0.3973 0.4630 0.5446 

% 12% 12% 11% 

ε90 167.1534 167.1534 163.8287 

MAX ̂ β (−76 . 9688 , 2 . 1455 , 2 . 9597 , −4 . 6480 , −1) (−76 . 9688 , 2 . 1455 , 2 . 9597 , −4 . 6480 , −1) (−76 . 9688 , 2 . 1455 , 2 . 9597 , −4 . 6480 , −1) 

GoF 0.5510345 0.6096547 0.677138 

% 6% 6% 6% 

ε90 164.3572 164.3572 164.3572 

SOS ̂ β (−19 . 8365 , −24 . 1780 , −1 . 6843 , 23 . 0309 , −1) (−37 . 1798 , −20 . 6518 , −4 . 8914 , 22 . 4924 , −1) (16 . 2930 , 4 . 1351 , 2 . 2042 , −5 . 3890 , 1) 

GoF 0.6391 0.7149 0.7921 

% 9% 9% 4% 

ε90 159.013 160.1321 165.3201 

1.5SUM 

̂ β (27 . 4692 , 14 . 0582 , 1 . 0081 , −12 . 9659 , 1) (27 . 4555 , 14 . 0608 , 1 . 0082 , −12 . 9683 , 1) (−20 . 4048 , −3 . 2308 , −1 . 6763 , 4 . 1796 , −1) 

GoF 0.5314 0.6059 0.6909 

% 10% 10% 5% 

ε90 162.8882 162.8875 164.1443 

kC ̂ β (31 . 8219 , 41 . 5015 , −5 . 2288 , −30 . 4070 , 1) (2 . 4227 , 14 . 3655 , 4 . 476 8 , −15 . 4 827 , 1) (6 . 6713 , −3 . 7849 , −1 . 5627 , 4 . 3751 , −1) 

GoF 0.3916 0.4629 0.5440 

% 5% 7% 4% 

ε90 165.793 168.1855 165.9668 

AkC ̂ β (7 . 9530 , −1 . 6065 , 0 . 3482 , 0 . 8960 , −1) (−25 . 2618 , −1 . 0371 , −1 . 4553 , 0 . 7368 , −1) (40 . 7617 , −1 . 6662 , −0 . 5106 , 0 . 5624 , −1) 

GoF 0.7403 0.8148 0.8817 

% 7% 11% 9% 

ε90 180.9401 24 4.04 42 231.9954 

MED ̂ β (−28 . 1536 , −1 . 9062 , −0 . 5785 , 0 . 5246 , −1) (−51 . 5261 , 1 . 9897 , 1 . 0285 , −0 . 5282 , 1) (6 . 9522 , 1 . 2873 , 1 . 0511 , −0 . 1044 , 1) 

GoF 0.8278 0.8575 0.8941 

% 9% 8% 14% 

ε90 237.8898 305.539 350.0691 
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Table A.12 

Results for experiments for d = 4 and corrupting the Y variables. 

V � 1 � ∞ 

SUM 

̂ β (1.946 8, 0.964 8, 0.9899, 1.0058, 1) (−1 . 9158 , −1 . 1083 , −0 . 8751 , −3 . 3186 , −1) (1 . 6655 , −1 . 0083 , −1 . 0530 , −1 . 0446 , −1) 

GoF 0.5999 0.6538 0.9006 

% 78% 14% 76% 

ε90 123.5456 149.6274 121.8106 

MAX ̂ β (1 − 04 . 7766 , −1 . 0780 , −2 . 8506 , −0 . 8355 , −1) (120 . 6153 , −1 . 4207 , −5 . 5268 , −0 . 7782 , −1) (54.3395, 2.3207, 6.0411, 3.4977, 1) 

GoF 0.3357 0.8267 0.9078 

% 12% 7% 12% 

ε90 151.6067 147.4952 138.4277 

SOS ̂ β (−12 . 1432 , −0 . 8507 , −1 . 0758 , −1 . 1049 , −1) (25 . 1165 , −1 . 2149 , −5 . 4326 , −1 . 1199 , −1) (−5 . 4787 , −1 . 8048 , −2 . 3397 , −2 . 0389 , −1) 

GoF 0.4247 0.9015 0.9801 

% 45% 13% 15% 

ε90 124.0456 135.9287 102.1587 

1.5SUM 

̂ β (−2 . 1265 , −0 . 9557 , −0 . 9984 , −1 . 0235 , −1) (34 . 3751 , −1 . 0783 , −5 . 2458 , −1 . 0619 , −1) (−0 . 6651 , −1 . 3869 , −1 . 5549 , −1 . 5790 , −1) 

GoF 0.5106 0.8044 0.9485 

% 77% 11% 22% 

ε90 124.3694 139.4734 95.54551 

kC ̂ β (−0 . 3095 , −0 . 9816 , −1 . 0017 , −1 . 009643 , −1) (2 . 1980 , −0 . 8680 , −0 . 9950 , −3 . 4086 , −1) (−0 . 6929 , −1 . 0211 , −1 . 0606 , −1 . 0666 , −1) 

GoF 0.5275 0.6525 0.8835 

% 80% 10% 74% 

ε90 123.0891 145.6142 120.8033 

AkC ̂ β (−7 . 2126 , −0 . 9981 , −1 . 2345 , −0 . 9988 , −1) (−1 . 7307 , −0 . 9801 , −1 . 0396 , −1 . 0121 , −1) (0 . 1128 , −0 . 9847 , −1 . 0149 , −1 . 0013 , −1) 

GoF 0.8785 0.9933 0.9981 

% 57% 77% 80% 

ε90 105.7586 120.4785 121.9634 

MED ̂ β (−8 . 4437 , −1 . 0328 , −1 . 1891 , −0 . 9958 , −1) (−3 . 0605 , −0 . 9660 − 1 . 0175 , −1 . 0366 , −1) (−1 . 7471 , −0 . 9713 , −0 . 9881 , −1 . 0144 , −1) 

GoF 0.9011 0.9921 0.9980 

% 58% 76% 79% 

ε90 105.9371 123.0289 123.8959 

� 1.5 � 2 � 3 

SUM 

̂ β (0 . 5934 , −1 . 0202 , −1 . 0588 , −1 . 0264 , −1) (0 . 6616 , −1 . 0203 , −1 . 0584 , −1 . 0270 , −1) (0 . 9775 , −1 . 0098 , −1 . 0563 , −1 . 0343 , −1) 

GoF 0.7489 0.8006 0.8418 

% 80% 80% 78% 

ε90 119.4431 119.5293 120.6788 

MAX ̂ β (120 . 6153 , −1 . 4207 , −5 . 5268 , −0 . 7782 , −1) (−54 . 3395 , −2 . 3207 , −6 . 0411 , −3 . 4977 , −1) (−54 . 3395 , −2 . 3207 , −6 . 0411 , −3 . 4977 , −1) 

GoF 0.8267 0.8384 0.8643 

% 7% 12% 12% 

ε90 147.4952 138.4277 138.4277 

SOS ̂ β (−14 . 4853 , 1 . 5436 , 4 . 4201 , 1 . 5950 , 1) (−0 . 3904 , 1 . 7361 , 2 . 9264 , 2 . 0617 , 1) (4.7620, 1.9721, 2.54 4 4, 2.0415, 1) 

GoF 0.9022 0.9272 0.9514 

% 13% 10% 12% 

ε90 131.3351 114.7621 106.4697 

1.5SUM 

̂ β (15 . 7120 , −1 . 1641 , −2 . 6186 , −1 . 8366 , −1) (−0 . 8627 , −1 . 4497 , −1 . 6239 , −1 . 9098 , −1) (−0 . 6434 , −1 . 4056 , −1 . 5798 , −1 . 5348 , −1) 

GoF 0.8079 0.8565 0.8965 

% 21% 22% 20% 

ε90 114.939 97.67539 97.29497 

kC ̂ β (−1 . 0976 , −1 . 0234 , −1 . 0643 , −1 . 0656 , −1) (−1 . 0942 , −1 . 0234 , −1 . 0641 , −1 . 0656 , −1) (−0 . 7613 , −1 . 0216 , −1 . 0617 , −1 . 0665 , −1) 

GoF 0.7053 0.7661 0.8144 

% 74% 74% 74% 

ε90 120.25 120.262 120.6901 

AkC ̂ β (0 . 8072 , −0 . 9319 , −1 . 1111 , −1 . 0901 , −1) (−1 . 5573 , −0 . 9672 , −0 . 9991 , −1 . 0184 , −1) (2 . 4 4 43 , −1 . 0165 , −0 . 9923 , −1 . 0147 , −1) 

GoF 0.9929 0.9954 0.9930 

% 64% 77% 82% 

ε90 124.0139 123.7847 123.5452 

MED ̂ β (−0 . 6735 , −0 . 9887 , −1 . 0180 , −0 . 9497 , −1) (0 . 4156 , −0 . 9995 , −1 . 0147 , −1 . 0116 , −1) (−1 . 1572 , −0 . 9753 , −1 . 0309 , −0 . 9853 , −1) 

GoF 0.9945 0.9949 0.9964 

% 75% 81% 78% 

ε90 118.3319 121.9701 120.0091 
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