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ABSTRACT

This paper presents a family of methods for locating/fitting hyperplanes with respect to a given set of
points. We introduce a general framework for a family of aggregation criteria, based on ordered weighted
operators, of different distance-based errors. The most popular methods found in the specialized liter-
ature, namely least sum of squares, least absolute deviation, least quantile of squares or least trimmed
sum of squares among many others, can be cast within this family as particular choices of the errors and
the aggregation criteria. Unified mathematical programming formulations for these methods are provided
and some interesting cases are analyzed. The most general setting give rise to mixed integer nonlinear
programming problems. For those situations we present inner and outer linear approximations to as-
sess tractable solution procedures. It is also proposed a new goodness of fitting index which extends the
classical coefficient of determination and allows one to compare different fitting hyperplanes. A series of
illustrative examples and extensive computational experiments implemented in R are provided to show
the applicability of the proposed methods.

Mathematical programming
Location of structures
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Linear regression

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of locating hyperplanes with respect to a given set
of point is well-known in Location Analysis (LA) Schobel (1999).
This problem is closely related to another common question in
Data Analysis (DA): to study the behavior of a given set of data
with respect to a fitting body expressed with an equation of the
form f(x) =0, with x=(X;,...,X;) € R%. This last problem re-
duces to the estimation of the ‘best’ function f that expresses the
relationship between the data or, in the jargon of LA, to the loca-
tion of the surface f(x) = 0 that minimizes some aggregation func-
tion of the distances to these points (see Amaldi et al., 2016; Diaz-
Bafez et al., 2004; Drezner et al., 2002). In many cases the family
of functions where f belongs to is fixed and then, the parameters
defining such an optimal function must be determined. The fam-
ily of linear functions is the most widely used. This implies that
the above equation is of the form f(x) = o + Zﬁ:1 B X, =0 for
Bo.Bi..... By e R

To perform such a fitting, we are given a set of points
{X1.....xn} c R4, and the goal is to find the vector ﬁ:
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(Bo. Bi. ..., By) that minimizes some measure of the deviation of
the data with respect to the hyperplane it induces, H(B) ={ze
RY: By + L, Bizi = 0}. For a given point x € RY, we define the
residual with respect to a generic x as a mapping &y : R™*! - R,
that maps any set of coefficients 8 = (Bo.....Bq) € R¢t1, into a
measure £x(f) that represents the deviation of the given point x
from the hyperplane with those parameters. The problem of lo-
cating a hyperplane for a given set of points {xy,...,x;} € R? con-
sists of finding the coefficients minimizing an aggregation function,
® : R" — R, of the residuals of all the points. Different choices for
the residuals and the aggregation criteria will give, in general, dif-
ferent optimal values for the parameters and thus different prop-
erties for the resulting hyperplanes. This problem is not new and
some of these criteria, as the minisum, minimax and some other
alternatives, have been widely analyzed from a LA perspective (see
Carrizosa and Plastria, 1995; Megiddo and Tamir, 1983; Schobel,
1996; Schébel, 1997; Schébel, 1998; Schébel, 1999, among other).
A first approach to locate a hyperplane is to consider that resid-
uals, with respect to given points, are individual measures of error
and thus, each residual should be minimized independently of the
remaining (Carrizosa et al., 1995; Narula and Wellington, 2007). It
is clear that this simultaneous minimization will not be possible
in most of the cases and then several strategies can be followed:
one can try to find the set of Pareto fitting curves (Carrizosa et al.,
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1995) or alternatively, to apply an aggregation function that incor-
porates the holistic preference of the Decision-Maker on the dif-
ferent residuals (Yager and Beliakov, 2010). This last choice is very
difficult and it is usual to apply an approach of complete uncer-
tainty (i.e., it is assumed that it is known the set of possible out-
comes, but there is no information about the probabilities of those
outcomes or about their likelihood ranking) leading to additive ag-
gregations.

The most popular methods to compute the coefficients of an
optimal hyperplane consider that the residuals are the differences
from one of the coordinates of the space (which are usually known
as vertical/horizontal distances). In this paper we present a frame-
work that generalizes previous contributions for optimally locat-
ing/fitting hyperplanes to a set of points. It introduces a family of
combinations residuals-criteria that allows for a great flexibility to
accommodate hyperplanes to a set of points (Marin et al., 2009;
Nickel and Puerto, 2005). One of the contributions of our proposal
is the use of modern mathematical programming tools to solve the
problems which are involved in the computation of the parameters
of the fitting models. In addition, it can be combined with some
of the mathematical programming techniques for feature selec-
tion (Bertsimas and Mazumder, 2014), with classification schemes
(Bertsimas and Shioda, 2007), or with constraints on the coeffi-
cients of the linear manifold. This unified framework is also able to
accommodate general forms of regularization, as upper bound on
the ¢5-norm of the coefficients (Hoerl and Kennard, 1988), since it
would only mean to add additional constraints to the mathemati-
cal programming formulations proposed in the paper, at the price
of increasing the computational complexity needed for solving the
problems. Many of the formulations described in this paper have
been implemented in R in order to be available for data analysts.

In our framework, errors are measured as shortest distances,
based on a norm, between the given points and the fitting surface.
This makes the location problem geometrically invariant which is
an interesting advance with respect to vertical/horizontal residuals.
We observe that this framework subsumes as particular cases the
standard location methods that consider residuals based on verti-
cal distances (commonly used in Statistics); as well as most of the
particular cases of fitting linear bodies using vertical distances but
different aggregation criteria described in the literature, as ¢, fit-
ting (¢p-norm criterion), least quantile of squares (Bertsimas and
Mazumder, 2014; Rousseeuw, 1984), least trimmed sum of squares
(Atkinson and Cheng, 1999; Rousseeuw, 1983), etc. The use of non-
standard residuals is common in the area of LA and other ar-
eas of Operations Research. However, it is not that usual in the
field of regression analysis although orthogonal (¢,) residuals have
been already used, see, e.g., Euclidean Fitting (Bargiela and Hart-
ley, 1993; Cavalier and Melloy, 1991; Pinson et al., 2008) or Total
Least Squares (Van Huffel and Vanderwalle, 1991), mainly applied
to bidimensional data; and the more general geodesic distance
residuals are applied in geodesic regression (Fletcher, 2013). Quot-
ing the reasons for that fact given by Giloni and Padberg (2002):
“we have left out a summary of linear regression models using the
more general ¢;-norms with 7 ¢ {1, 2, co} for which the computa-
tional requirements are considerably more burdensome than in the
linear programming case (as they generally require methods from
convex programming where machine computations are far more
limited today).”

In order to compare the goodness of the fitting for the different
models, we have developed a new generalized measure of fit. This
proposal is based on a generalization of the classical coefficient of
determination for least squares fitting, that will allow one to mea-
sure how good is an optimal hyperplane with respect to the best
constant model, X; = Bo.

The paper is organized as follows. In Section 2 we introduce
the new framework for fitting hyperplanes as well as some re-

sults that allow us to interpret the obtained solutions for prac-
tical purposes. Next, in Section 3, a residual-aggregation depen-
dent goodness of fitting index is defined and an efficient approach
for its computation is presented. Two types of residuals are an-
alyzed in more detail, namely those induced by polyhedral-and-
¢r norms for rational t >1. In Section 4, we present new meth-
ods for the location of hyperplanes assuming that the residuals
are measured as the shortest norm-based distance between the
given points (data set) and the linear fitting body using polyhedral
norms. The results of this section are instrumental. They consti-
tute the basis to address the more general problems in Section 5,
since they will permit to develop inner and outer linear approxi-
mations for more general Mixed Integer Non Linear Programming
(MINLP) problems that result in the general case. Section 5 ana-
lyzes the location of hyperplanes using ¢; norms. Since in this case
non convex problems are derived, we also present outer and inner
linear approximations that reduce, the corresponding MINLP prob-
lems with ¢;-norms residuals, to problems with polyhedral norm
residuals. Section 6 is devoted to the computational experiments.
We report results for synthetic data and for the classical data set
given in Durbin and Watson (1951). In addition, we include an il-
lustrative example of the scalability of the methodology with sev-
eral thousands of points. The paper finishes with some concluding
remarks and future research.

2. A flexible methodology for the location of hyperplanes

Given is a set of n observations or demand points (depending
that we use the jargon of data analysis or location analysis, re-
spectively) in a (d + 1)-dimensional space, {xi,...,xn} C {1} x R4
(we will assume, for a clearer description of the models, that the
first, the Oth, component of x; is the one that account for the in-
tercept, being xg = --- = X0 = 1). Next, we analyze the problem of
locating a linear form (hyperplane) to fit these points minimizing
different forms of measuring the residuals and their aggregation.
For any y € R%1, we shall denote y_g = (31, ....Yq). i.e., the vec-
tor with the last d coordinates of y excluding the first one. First,
we assume that the point-to-hyperplane deviation is modeled by
a residual mapping &y : R™! — R, &x(B) = D(x_g, H(B)), being
D a distance measure in R? This residual represents how “far”
is the point (observation) x € R4*+! with respect to the hyperplane
H(B) ={y eR?: (1,y")B = 0}. At times, for the sake of brevity, we
will write the hyperplane as 8‘X =0, with 8= (B, B1,.... By)' €
R4+, In addition, to simplify the presentation, we will refer, when-
ever no possible confusion occurs, to the residual with respect to
the point x; as ¢;.

An overall measure of the deviations of the whole data set with
respect to the hyperplane induced by B is obtained by using an ag-
gregation function of the residuals, ® : R" — R. With this setting,
one tries to minimize such an aggregation function and the Fitting
Hyperplane Problem (FHP) consists of finding B € R4+ such that:

B e arg min ®(e(B)), (1)
ﬂeRd“

where e(B) = (61(B),...,en(B))! is the vector of residuals.

Note that the difficulty of solving Problem (1) depends on both
the expressions for the residuals and the aggregation criterion &. If
@ and ey are linear, the above problem becomes a linear program-
ming problem. In this paper, we consider a general family of aggre-
gation criteria that includes as particular cases most of the classical
ones used in the literature (Bertsimas and Mazumder, 2014; Giloni
and Padberg, 2002; Rousseeuw and Leroy, 2003; Yager and Beli-
akov, 2010).

Let Aq,..., An € R and let € € R" be the vector of residuals of all
of the points in the given data set. We consider aggregation criteria
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® : R" - R, defined as:
n

Cb(e):Zki e‘(’i), 1<p < +oo, (2)
i=1

where &;) € {€1,..., &n} is such that g;y<--- <g&(). Observe that

this operator defines a multiparametric family (called ordered me-
dian functions (Nickel and Puerto, 2005)) that depending on the
choice of the A-weights captures many of the models proposed in
the literature.

Most classical models assume that the residuals are defined as

the vertical distance (with respect to the last coordinate) from the
points to the hyperplane:

&x(B) = |xq4 —Z By 2 Xk | 3)

(assuming that 84 #0).

Therefore, the difference between them comes from the choice

of the aggregation criterion ®. We show below how some classical
methods can be accommodated to our framework.

1

The Least Sum of Squares (LSS) method, credited to
Gauss (1809), is the most widely used approach to esti-
mate the coefficients of a linear model due to its simplicity (a
closed form for the optimal coefficients is obtained) and its
theoretical implications for the inference over the total popu-
lation. However, somehow restricting hypotheses are required
in order to be applied (see, e.g., Giloni and Padberg, 2002).
The LSS criterion is defined as the sum of the squares of
the residuals, that is: ®jss(€1,...,€n) = >0y eiz, where the
residuals &), are given by (3). The reader may observe that LSS
corresponds to Problem (1) with A =(1,...,1), p=2 and &
the vertical distance.

. The Least Absolute Deviation (LAD) method (introduced

by Edgeworth, 1887) consists of minimizing the sum of
the absolute value of the vertical residuals. Therefore,
Ppap(eq,...,6n) =3 1L, |&;l. Note that LAD corresponds to
the model in (1) for A = (1,...,1) and p=1.

. The Least Quantile of Squares (LQS), recently introduced by

Bertsimas and Mazumder (2014), is a generalization of the
Least Median of Squares (LMS) introduced by Hampel (1975).
It also considers vertical distances as residuals, but they
are aggregated to minimize the r-quantile of its distribu-
tion (r ranges in {1,...,n}). Hence, ®gs(eq,...,€n) =1—
quantile(e?, ..., €3) :=€2,.
This method also fits to the general form of the aggregation cri-
teria considered in this paper. In this case, following the nota-
tion introduced in (2), the LQS hyperplane can be obtained for
(r-1) (n—r)
p=2and A=(0,...,0,1,0,...,0). (Observe that LMS hyper-
plane is also obtained within the same scheme when p =2 and
n n
Pk SR
A=(0,...,0,1,0,...,0).)

. The Least Trimmed Sum of Squares (LTS) method was intro-

duced by Rousseeuw (1984) as a robust alternative to the LSS
method, in that it has a high breakdown point. Recall that, in-
tuitively, the breakdown point of an estimator is the proportion
of incorrect observations (e.g., arbitrarily large observations) an
estimator can handle before giving an incorrect (e.g., arbitrarily
large) result. With our notation, it corresponds to choose again
as residuals the vertical distance, p =2, and the aggregation
criterion ®;rs(eq,..., &n) = ZL] e%l.) where e € {e1,...,€n}
with €4 <) for i=1,....n—1, and he{1,...,n}. The

. ..n S
most common choice for h is ij’ considering the best 50%
square residuals.

In the following, we denote by LTS(«) the LTS method when
100 — o% of the data is discarded, i.e., the percentage of the
data that may be considered as outliers.

The function @, introduced in (2), is invariant against permuta-
tions of its components (sometimes called symmetric in the related
literature) and, for non negative lambda weights, a monotone func-
tion, ensuring that the ordering of the individual residuals do not
affect the overall goodness of the fitting. Moreover, it also implies
that a componentwise smaller vector of residuals gives rise to a
more accurate fitting.

The natural implication of the assumption made about the def-
inition of residuals is that, as expected, the response (projection)
of a point on a given hyperplane differs from the classical eval-
uation. In this setting the response is the closest point, with re-
spect to the distance D, to the hyperplane #(f). For the sake of
readability, we include the following result which follows applying
(Mangasarian, 1999, Theorem 2.1) to the definition of the residual
mapping &; = minyg) 120 — -

Lemma 2.1. For a given point z' = (1,zy,...,z4) and the hy-
perplane H(B) the response Z consistent with the residual
€, = MMy () llz_o —y|l is given by Z=2z_g— ﬁk(ﬂ), where
Iyl* = MaX, pd. | <1 Zly is the dual norm to |y|| and k(B) =
arg maxj -1 B oX. Moreover,

1Bz|

S TR @

From the above result, the response for a point with a un-
known coordinate (without loss of generality, the last component,
d), namely z = (1, 2y, ...,24_1, 0), will be given by:

5 Bz
Zq = k(B)a-
1Bl
Hence, differentiating Z with respect to each z;, j=1,..., d—1, we
get
024
= -k(B)q,
dz; IIﬂ

which may be 1nterpreted as the marginal variation of the d-th co-
ordinate with respect to the jth coordinate whenever the other di-
mensions remain constant.

Explicit expressions for such projections, namely, ¢4, £ and ¢;-
norms, for T > 1 are described in the following lemma.

Lemma 2.2. Let z= (1,z,...,24)", then
1. If D is the ¢;- distance,
zy if | Bl #max{|B;l : j=1,....d},

Bz . )
~ Z s if B =max{|B;|:j=1,....d},
Zk= k— ”ﬂ O”oo ﬂk {|ﬂ]| ] }
t
p'z ko if Be=—max{|B;|: j=1,....d},
|Iﬂ ol

fork=1,..., d, and for some vy, ..., vg > 0 such that }7;v; = 1.
2. If D is the t- distance,

t
zk—ﬁ, if B, > 0,
2 = ﬂ*t‘” k=1,....d.
z .
+ if B, <0,
Bl Th

3. If D is the ¢,- distance with 1 < T < +oo then

5 B'z
2k =12 k , k=1,....d
k=2 (B
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and
sign viee
g (/3/<)|13k|1 i #0
d /
ke(Be=1{ | D18l k=1,....d
j=1
0 if B, =0,
being v such that 1 + 1 =1.
Proof. The proof of items 1. and 2. can be found in

Mangasarian (1999). The proof of item 3. follows from the
Lagrangian optimality condition applied to maxj,, B_oz. First,
we observe that a Lagrange multiplier exists since the problem
is regular at any point of the ¢; unit ball (Note that the gradient
of the unique constraint is always linearly independent.). Next,
the Lagrangian function is L(z, ) = B_gz— A Zﬁ:] |z¢|*. Therefore,
its partial derivatives are: %k:,8,(—Ar|zk|f*151gn(lk), for all
k=1,...,d. Hence, equating to zero the partial derivatives, it
follows that for any index k such that z; # 0

A = IBk
Tz

Let us define the sets [={k: B, >0}, J={k: B, <0}, K={k:
B = 0}. Now from Eq. (5), and taking into account that ||z||; =1,
we obtain:

sign(z;). (5)

sign(z) By !
. (dg.(")ﬂ’) if kelu),
lzl" = 1 (2L, sign(z)B)”
0 otherwise.

Moreover, the Hessian of L is diagonal and all its entries are nega-
tive, namely % = —At(t —1)|z;|"~2. This implies that z* and A*
k
are local maxima.
In the particular case of T =2, one can check that k(8), = By
which simplifies the above expression.
O

We note in passing that &x = Dy (x_o. H(B)) and thus, accord-
ing to Lemma 2.1

|BX|
I1B-oll*

Observe also that when the points in the data set lie exactly on
a hyperplane, #, this hyperplane is always optimal for all versions
of Problem (1), although for some specific choices of A the solution
may not be unique and different hyperplanes may be alternative
optima.

Remark that the standard residual (vertical distance) is a dis-
tance measure that is not induced by a norm, but its expression
can be written in an analogous form and so it fits to the shape of
the distances that are considered in this paper. In particular, the
vertical distance (with respect to the last coordinate) may be de-
fined as Dy (x, H) = |Bgxg — X Bixi — Bol/|Bal-

The above aggregation criteria (2) and residual functions (4) are
rather general and exhibit good structural properties. On the one
hand, they accommodate most of the already considered fitting
methods in the literature. On the other hand, one can always ex-
ploit its properties and different representations in order to solve
Problem (1). In the following we prove some structural properties
that imply the possibility of applying different methodologies to
solve (1).

We note, without proof (it can be found in an extended version
of this paper (Blanco et al.,, 2016)), that our globalizing criterion
O(ex(-)) is a difference of convex (D.C.) functions. This fact allows
one to apply all the available results on the optimization of this

DH” (X_o,H) = (6)

class of functions (see, e.g., Thoai, 1999). Alternatively, we can give
a more efficient representation that helps latter in the resolution
of the problem. This representation is based on simpler functions
which replace ¢ by more friendly classes of functions (with re-
gards to the optimization phase) and that permit to get a manage-
able form of a mathematical program. In the following we include
a first mathematical programming formulation for the generalized
fitting Problem (1), for any choice of ® and &y.

Theorem 2.3. Let {xq,..., Xn} R be a set of points, AR,
r .
A=Ay —Ap_q, fork=2,...,n, p= 5 €Q and ||-]| a norm in RY.

Problem (1) is equivalent to the following mathematical programming
problem:

n n
min Xlzz,-—i—{ Z Ak((n—k-i-l)tk-i-zzik)
i=1

k:Ay>0 i=1

+ Z (Ak)zwik (7)
1

k:Ap<0 i=
ty:
s.t. g > |ﬂx,|’ Yi=1,...,n, (8)
1B-oll*
zZ =€, Vi=1,...,n, (9)
te+zg >z, i=1,...,n, k=2,...,n, A, >0 (10)
n
Zyikzn—lc+1, k=2,...,n: Ay<0 (11)
i=1
g <Myy, i=1,....n,k=2,....n: A, <0 (12)
wg<z,i=1,....nk=2,...,n: Ay <0 (13)

Yie €{0, 1}, wy = 0, Ay <0,

Ziks thO, i,k:l,...,n,Ak>0
BeRH >0 i=1,...,n,

where M > 0 is a suitable large constant.

Proof. Applying the result in Grzybowski et al. (2011, Theorem 3.6)
the aggregation function @ can be equivalently written as

®(e(B)) =)~1Z€i(ﬁ)p+ZAk9k(ﬁ)’ (14)
i=1 k=2
where 0 (B) = max{e; (B)P + ...+ Eiy (B)P : for all

{i1,....ip_gq} c{1,....,n} such that i; <iy <... <iy_p,1}. (The
reader may observe that the functions 6, are usually called
(n—k+ 1)-centrum in the specialized literature of optimization
Nickel and Puerto, 2005.) The z-variables in the formulation rep-
resent the residuals raised to the power of p= 1. The objective
function (7) has three terms. The first one corresponds to the first
one in (14). The terms (n—k+ 1)t + 31 zy together with the
constraints (10) provide valid representations for the (n—k+1)-
centrum functions of the elements of the vector z = (z1,..., Zn)t
whenever A is positive. On the other hand, if A is negative the
expression > ; wy together with (12), (13) and y; {0, 1} give a
valid representation for the (n—k+ 1)-centrum functions of the
elements of the vector z = (z1,...,z,)t. Finally, (8) and (9) ensure
that zizeip, for all i=1,..., n in the optimal solution of the
problem. 0O
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Note that the above problem is a MINLP problem, whose con-
tinuous relaxation is in general non convex due to the set of
constraints (8). Apart from the mathematical programming for-
mulation above, one may use alternative (in some cases bet-
ter) formulations for the ordering problems as those provided in
Fernandez et al. (2014). In particular, some important special or-
dered median aggregation criteria permit to have a simpler formu-
lation that avoids the use of binary variables. The following result
shows a better formulation for the fitting problem under the as-
sumption that 0 < Aq <... <A, We call this setting for lambda
the monotone case.

Proposition 2.4. Let {x;,....x,} CR¥! be a set of demand
, r .
points, A € R", such that 0<A;<---<Ap, p= S eQwithr>seN,

gcd(r,s) =1 and ||| a norm in RY. Then, Problem (1) is equivalent
to the following mathematical programming problem:

n n
miny v+ ) w;
= ia

s.t. (8), (9),
vi+w;>=Aizp, Vi, j=1,....n,
z,60; > 0,v,weR", B e R,

Proof. The proof follows by the representation of the order-
ing between the residuals by permutation variables, which for
0<A;<---<Ap, allows one to write the objective function in
Problem (1) as an assignment problem which is totally unimodular.
Therefore, it can be equivalently rewritten using its dual problem.
The interested reader is refereed to Blanco et al. (2014) for further
details on this transformation. O

The reader may observe that the nonlinear constraints z} > &
for all i=1,...,n can be transformed into a set of second or-
der cone constraints using a simplified version of Lemma 1 in
Blanco et al. (2014). This implies that those constraints can be effi-
ciently handled by nowadays nonlinear solvers since they are con-
vex and friendly for the optimization.

Remark 2.5. Let r,s € N\ {0} with gcd(r,s) =1, and k = |log, (r)].
Then, there exist variables uq,...,u,_; >0 such that each con-
straint z°>¢&" in (8) can be equivalently written as constraints
in the form: u? <u z%ie%, g2 suhuzﬁ1thegh, u;>0, with j=
1,...,k—1 and such that 1 <a;+b; +c; <2 for given aj,bj,c;j €
Z, and dy, fy. &, € Z4 such that dy + by + ¢, = 1.

By the above remark, the nonlinear constraints in the form
z5>e" are written as second order cone constraints in the form
X2 <YZ or X2 <Y (for some choices of the variables X, Y and Z in
our model).

Hence, the difficulty of solving Problem (7)-(13), depends es-
sentially on the choice of the residuals since all except constraints
(8) are linear or second order cone constraints which can be ef-
ficiently handled with nowadays modern optimization techniques.
In the next sections we analyze different choices for the residuals.

Remark 2.6 (Subset Selection and Regularization). In the case
where the number of points (n) is much smaller than the dimen-
sion of the space (d), it is common in Statistics to compute fit-
ting hyperplanes over a smaller dimension space. The new space
is determined by those components that, after projecting, permits
a good fitting in a lower dimension space. Several methods have
been proposed in the recent literature to perform such a compu-
tation. If the dimension of the new space, q <d, is given, a con-
straint in the form ||B_gllo < q (here |-||p stands for the support
function or nuclear norm, i.e., the number of nonzero components
of the vector) may be included in the mathematical programming

formulation (see Bertsimas et al., 2016; Miller, 2002), which gives
rise to the so called Subset Selection Problem. If such a dimension
is not known, regularization methods that penalize the number of
nonzero elements or the size of B_g can be applied to solve the
Feature Selection Problem (see Miyashiro and Takano, 2015). Note
that both types of approaches can be incorporated in our models
although this will increase its computational complexity.

3. Goodness of fitting

After addressing the problem of locating/fitting a hyperplane
with respect to a set of points, we will analyze the goodness of
this fitting extending the well-known coefficient of determination,
R2, in Regression Analysis. (Recall that the coefficient of determina-
tion is the proportion of the variance in the dependent variable
that is predictable from the independent variable(s).) For the sake
of presentation, we assume that the variable that needs to be an-
alyzed as dependent to the others is the last coordinate X;, or in
other words Y = X;. The goodness of fitting index, GoF, is defined
as:

"
GOFgpe=1-— %,
where ®* is the optimal value of (1), namely @(ex(ﬁ)), and &f
is the optimal value of Problem (1) when it is additionally re-
d-1

———
quired that B is in the form B = (B8y,0,...,0,-1), i.e. the hy-
perplane is forced to be constant (X; = ). Note that the com-
ponents 1,..., d —1 do not appear in the model. Hence, ®§ mea-
sures the global error assumed by the best fitting horizontal hyper-
plane; whereas GoFg, . measures the improvement of the model
that considers all the dimensions with respect to the one that
omits all (except one) of them. Observe that this coefficient coin-
cides with the classical coefficient of determination provided that
the aggregation criterion is the overall sum and the residuals are
the squared vertical distances: in that case By =X, (the sample
mean of the dependent variable). Note that GoF is well defined if
®F 0.

The GoF clearly verifies one of the important properties of the
standard coefficient of determination, 0 < GoF, . <1. Furthermore,
one may interpret the coefficient as a measure of how good is
the best possible hyperplane under certain criterion and residual
choice with respect to the best horizontal hyperplane. When GoF is
close to 0, it is because ®* ~ ®§, so not appreciable improvement
is given by the complete model (which considers all the compo-
nents) with respect to the simple constant model; whenever GoF
is close to 1, it means that &* « @}, being the proposed model
significatively better than the constant model (note that GoF =1
iff ®* =0, i.e.,, when the model perfectly fits the demand points).
Hence, the closer the GoF to one, the better the fitting; whereas
the closer to zero, the better is the constant model with respect to
the full model.

Observe that the above definition coincides with some of the al-
ternatives to measure the goodness of fitting for robust approaches
to the least sum of squares methodology (see McKean and Siev-
ers, 1987).

To obtain the GoF, apart from solving Problem (1) to get ®*, we
must also solve the problem:

@y = min ®(D (X1, Ho), - - ., D(xn, Ho)), (15)
BoeR

where #y = {y e R? : y; = By} for some By € R.

Lemma 3.1. Let the residual mapping &y : R%! — R, be induced by
a norm ||-||. Then, Problem (15) is equivalent to

®f = min @ (ke X1 — Bol. . ... KelXng — Bol). (16)
BoeR
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where

1

Keg= ————M
MaX;cpd:||z| <1 Z2d

Proof. For the point x, in the data set, the residual under
the assumption X; = By is &x(Bo) = D(xy, Ho) = minyey, [|IX, — vl
where Ho={ycR?:y;=fy} for some By cR. Then, by (4) in
Lemma 2.1

Slc(,BO) =

[Xa = Bol

with ||-||* the dual norm of |-||. By definition of the dual norm
Iyll* = MaX, pd. | <1 Z'y. Hence, applying such a definition to y =
(0,...,0,-1) the result follows. O

From the above result it is easy to see that x, =1, provided
that ey is induced by any ¢; norm, even for the ¢; and the ¢4
cases. However, as we will see in Section 4, not all the norms have
the same k. constant.

Let us introduce the function f; ,(8) :=Y[L; A; sz). Next, with

our specifications for @, the problem to be solved to obtain ®j is:
CI)’6 = Ke minfk,p(ﬁ) (17)
BoeR

where ¢; = |x;; — Bo| fori=1,...,n.

Solutions to Problem (17) for a given Sy € R motivate the in-
troduction of the concept of ordered median point. Indeed, B is a
(A, p)-ordered median point ((A, p)-omp in short) if it is an optimal
solution to (17).

Some special cases of (A, p)-omp are well-known and widely
used in the so-called Location Analysis literature. If A; =1 for all
i=1,...,n, the (A, 1)-omp is known to coincide with the median,
median(Xqg, ..., Xyg), of {X14....,Xyq}; while the (A, 2)-omp is the
arithmetic mean of the x j-values.

In the general case, i.e., for arbitrary A and p, the ordered me-
dian points do not have closed form expressions (Fernandez et al.,
2014; 2017), although they have been around in the field of LA for
several years (Nickel and Puerto, 1999; 2005). Moreover, they can
be obtained, as shown below, to be used in the computation of the
goodness of fitting index.

In the following we show how to solve (17) for general choices
of non-negative vectors A and p € [1, +oc0). Without loss of gen-
erality we assume that x4 <Xy4 <... <X,4. Let us denote further
by ay := M57 the solution of the equation &f(B) = &f () for all
i<k, i,k=1,...,n in the range (x4, X;q). Let A be the set con-
taining all the x4 and « points and denote by z, the kth point in
A sorted in non-decreasing sequence. By construction, in the in-
terval I, = (4, zy,1) all the functions ef(ﬁ) are monotone for all
i=1,...,n. Let us denote by A the set of all the critical points of
the function f, , in the interval (xg, X,4) for p € (1, +-00).

Theorem 3.2. For any non-negative vector A and p (1, oo) the set
AU A¢ always contains a (A, p)-omp. For p =1 the set A always con-
tains a (A, 1)-omp.

Proof. For all Bel, the function fo,p for pe (1,+c0) is a non-
negative linear combination of monotone functions. Therefore, its
derivative can vanish in at most one point. This implies that the
minimum of f, , is always attained on AUA.. If p=1 then f;
is a non-negative linear combination of linear functions; and thus
the minimum in the interval I, is attained in one of its extreme
points. Hence, the minimum of f, ; is attained on A. O

The reader may observe that the implication of the above the-
orem is that By can be always obtained by a simple enumeration
of the set AU Ac (Observe that the cardinality of this set is O(n2)).

Then, ®f = ke Y11 AilXig — BO'Z)' Thus, the complexity of comput-
ing GoF is essentially the same that the resolution of Problem (1),
which must be solved to obtain ®*.

Example 3.3. The data considered in this example consists of 47
points in R? about stars of the CYG OB1 cluster in the direction
of Cygnus (Humphreys, 1978). The first coordinate, X;, is the log-
arithm of the effective temperature at the surface of the star and
the second one, X, is the logarithm of its light intensity. This data
set has also been analyzed in Rousseeuw and Leroy (2003) and
Yager and Beliakov (2010), among others.

We run the LSS, LAD, LMS and LTS(«) with « {50, 75, 90}.
The obtained lines and the goodness of fitting indices (GoFg, .) are
shown in Fig. 1.

Observe that the LSS and LAD models were not able to ade-
quately fit the data while the others (which are somehow similar)
show their better performance against the outliers. Note also that
GoF reflects this fact, although it is not clear whether LTS(75) (the
one with the largest GoF) is better than the others.

In order to show the behavior of the LTS models and which are
the results of their optimal fitting lines, Fig. 2 shows the fitting
lines that minimize the 50%, 75% or 90% of the residuals and the
points that the corresponding optimization problems discard (filled
dots in the subfigures) to reach the fitted lines.

Observe that the percentage of discarded data (1 —«) is a key
point in LTS models. Several measures are available to determine
breakdown points. One of the most widely used measures is the
Ry-index (see Atkinson and Cheng, 1999; Hofmann et al., 2010),
which is defined as:

Pirs@) n—d

Ry = e
brs  lan| —d

In Fig. 3, we show the R, index as a function of «, for the stars
dataset. A big slope change in such a function indicates the ade-
quacy of using the corresponding « for the LTS model. As can be
observed, Ry, has a high-breakdown point in @ = 90% as detected
by GoF. Actually, although both indices measure different charac-
teristics of the model (GoF measures the convenience of using the
model against the simple constant one and R, the detection of
outliers data in the sample), they have a similar behavior (Ry is
similar to 1 — GoFjrg(q)). Moreover, the index Ry for the three LTS
models can be seen in the table of Fig. 1.

4. Fitting hyperplanes with block-norm residuals

In this section, we present models to compute the parameters
of the fitting hyperplanes when distances are assumed to be mea-
sured by a block-norm between the points and the closest point in
the hyperplane; and the aggregation criterion is considered in the
general form given by Problem (1). Recall that a block norm is a
norm such that its unit ball is a polytope symmetric with respect
to the origin and with non empty interior. Block norms, also re-
ferred to as polyhedral norms, play an important role in the mea-
surement of distances in many areas of Operations Research and
Applied Mathematics as for instance in Location Analysis or Lo-
gistics. They are often used to model real world situations (like
measuring highway distances) more accurately than the standard
Euclidean norm.

The results in this section will be instrumental to address the
general problem of finding hyperplanes with general norms (see
Section 5). Using block norms induce linear programming prob-
lems and moreover, by its denseness property, any norm can be
arbitrarily approximated by block ones (Ward and Wendell, 1985).

We denote by ||-|[z the norm in RY whose unit ball is given
by a symmetric with respect to the origin, with non empty inte-
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Method Line GoF (R,)
LSS y=-0.4133 x 4 6.7934 0.0442
LAD y=-0.6931 x + 8.1492 0.0065
LMS y =4 x-12.76 0.0765

LTS(50) y=3.0461 x -8.50 0.3531 (0.1141)

LTS(75)  y=3.0461 x -8.50  0.4927 (0.2484)

LTS(90) y = 2.8028x -7.4035 0.4436 (0.4008)

6.5

4.5
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Fig. 1. Optimal lines with the classical methods for the stars data set. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 2. Estimated models and discarded points (filled dots) in LTS models.
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Fig. 3. R, index for the stars dataset.

rior polytope B, i.e., B={x e R%: ||x|z < 1}. Let Ext(B) = {bg: g =
1,...,G} be the set of extreme points of B and B? the polar set of
B which is defined as:

B ={veR!:v*hy<1,g=1,...,G}

and Ext(B%) = {b?, ..., bgo}.
It is well-known (Ward and Wendell, 1980; 1985) that the eval-
uation of a block norm can be done in terms of the extreme points

of the polar set of the polytope B:

Xl = max{|x'b]| : g=1.....G"}, for all x e R". (18)

The above expression is a linear program, whose complexity de-
pends on the number of extreme points of B. In the case of ex-
ponentially many extreme points, one can always resort to column
generation techniques to improve the performance of its computa-
tion. Special cases of block norms are the Manhattan (¢;) and the
Chebyshev (¢,) norms for adequate choices of the extreme points
of the unit balls. Any block norm ||-||z in R? induces a distance
between vectors x,y € RY given by Dg(x,y) = ||x — y||5.

Given a set of points {x1, ..., xn} € R? and a polyhedral unit ball
B, our goal is to obtain the hyperplane H(B) ={y e R?: (1,y"))8 =
0} such that the overall distance Dg(-, -) from the sample to H(8)
is minimized according to the aggregation function ® (for 1 < p =
L € Q). That is:

n
P
> Ai€ ),
io1

where for any x € RY, &y = Dg(x, H(B)). is the “|-||g-projection”
of x onto the hyperplane #(f), and &(;) denotes the element in
{e1...., en} which is sorted in the ith position (in nondecreasing

min RM
ﬂeRdH ( B)
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We recall that according to Eq. (4) in Lemma 2.1, for any poly-
tope B symmetric with respect to the origin and with non empty
interior, and H(B) = {y* e RY : (1,y")B = 0} then Dg(x_g, H(B)) =

|B'x]
1B ol (150 Xa) €
R4+ s a given point.

The following is a simpler valid formulation for the hyperplane
location problem with block norm residuals. For a set of linear
equations a‘x_ bj, for j=1,...,m, we denote by \/T:1[‘13X =b;]
the dlSle‘lCtlve constraint that requires that at least one of the
equations aﬁx =b; (for j=1,...,m) is satisfied by x.

. where B0 is the polar set of B and xf =

Theorem 4.1. Let {xq,..., xn} C R4 be a set of points and let B C
RY be a polytope with Ext(B) = {by, ..., bc}. Then, (RMjy) is equiva-
lent to the following disjunctive programming problem

n
p*(B) :=miny " 1;6; (19)
st.  (9)-(13)

&> pBx,Vi=1,...,n, (20)
&>-BxVi=1,...,n, (21)
Blobe<1 ¥Yg=1.....G. (22)

G
\ [Bobe = 1], (23)
g=1
Yie €{0, 1}, wy = 0, Ay <0,
Ziks thO, i,k:l,,..,n,Ak>0

BeRM! >0 i=1,....n

Proof. Let us denote by &; = Dg(x;, H(f)). By Lemma 2.1, &; =

I\;llﬂ;ﬁilo' Let ﬂ*eRd“ be an optimal solution of (RMjg) with

B*, #0. Then, g’ = ||ﬂ_ H
with || llgo = 1. Thus, there is an optimal solution of (RMp),
B, that verifies Dg(x_g, H(B)) = |Bx| for any x' = (1,xq,..., Xq) €
R4+1, Therefore, we can assume that IB-ollgo =1, hence &; =
|Bx;| (constraints (20) and (21)). Since (B°)° = B then ||B_gllgo =
max{| Z}; Bibgi| : g = ., G}. Hence, there exists gy € {1,...,G}
such that ||B_¢llgo =1 (disjunctive constraint (23)) and thus
ZL] Bibgi < Z;L] Bibg,r = 1 (constraint (22)). (Note that absolute
values do not need to be taken explicitly into account since if
bg € Ext(B), then —bg € Ext(B).) O

is also an optimal solution of (RMj)

The above problem can be equivalently written as a Mixed In-
teger Second Order Cone Optimization (MISOCO) problem once
constraints (9) are transformed, using the result in Remark 2.5,
and binary variables are added to decide which gy is chosen to
verify constraint (23). By the same token, this problem can be
also equivalently rewritten as G (recall that G is the cardinality of
Ext(b)) different Second Order Cone Programming Problems (SOCP)
(each of them fixed to verify one of the disjunctive constraints).
Furthermore, mixed integer non linear disjunctive programming
techniques (see, e.g., Balas, 1979, Lee and Grossmann, 2000) may
be used to solve the corresponding problem. Based in the above
discussion, the following is another valid MINLP formulation for
(RMp).

Corollary 4.2. Let {xq,...,x,} C R%*! be a set of points and let B C
RY be a polytope with Ext(B) = {by, ..., bg}. Then, (19) is equivalent
to the following problem:

n

0*(B) ::minZAij (24)
j=1

st (9)-(13)

e >Bix, Vi=1,...,n,h=1,...,G, (25)
elZ_ﬂzxisvi:],...,n,h:‘l’.“’c’ (26)
B obe<1,Vg=1,...,Gh=1,...,G, 27)
B obh=8&.h=1,....G, (28)

G
2 =1 (29)
h7

Br e R4 & €{0,1},Vh=1.....G,
Yik € {0, 1}, 0y = 0, Ay <0,

Zi, >0, i,k=1,....n, Ay>0
&>0,i=1,...,n

Some special cases for the aggregation function & allow us
even simpler formulations reducing considerably the computa-
tional complexity of the problems. In particular, when X; =1 for
alli=1,...,n, the integer variables representing ordering (w;;) can
be removed from the above formulation.

The following result permits to consider polyhedral norms
which are dilations of other polyhedral norms, i.e. polyhedral
norms ||-||,;z for some bounded polyhedron B and >0 (uB=
{uw z:zeB}). It will be very useful in the next section when
we approximate the problem of locating hyperplanes with general
norms by problems with polyhedral ones.

Lemma 4.3. Let B be a polytope and p > 0. Then, if B* is an optimal
solution for Problem (24) for B=B, f = %ﬁ* is an optimal solution

for (24) when B = 1uB. Moreover, p*(uB) = -1 o* (B).

Proof. It is sufficient to observe that for any 8 € R4+1:

||(,31~~-,,3d)||@0
=max{|ub,f'|:g=1.....G}
= pmax{[bgfl:g=1.....G} = ull (B, ... Ba) -

Since <I>ME(61,..,,€H) = ﬁ@E(el,...,eH), we get the relation
between the optimal values. Let §* be an optimal solution of (24).
Then, 1 B* is clearly a feasible solution to Problem (24) when B =

o
B since |(LB7. o LB g0 = B B lp =1 O

In order to compute GoF for solutions to problems with block-
norm residuals, note that the one dimensional Problem (16) does
depend on & and also on the residuals through «. Let us denote
by kg the constant k. when the residuals &4 are defined as the
block-norm projection with unit ball given by the polytope B.

Corollary 4.4. Let B c R? be a polytope. The Goodness of Fitting in-
dex, GoF, when the residuals are defined as the block-norm distance
with unit ball B, can be computed as:
CD*
- max
it Xig — (A, p) —omp(x4))|P g=1...G

GOF(];’S =1-
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6.5

Method (&, €) Optimal Line GoFg ¢ —
(SUM, 17) y =Tz — 2581 0.6505853 ) Ha
(SUM, £) y = 5.25z + —18.1425 0.7009688 | i

(SUM, Hex) y =Tz — 2581 0.6505853 .
(MAX, (;)  y = —3.230769z + 18.77577 0.5336373
(MAX, £)  y= —3.230769z + 18.77577  0.6438685 |
(MAX, Hex) y = —3.230769z + 18.77577  0.6438685
(kC, f1) y = —4.307692x + 23.03346  0.4628481 | ]
(kC, £oo) y = —2.493333x 4 15.67113  0.5921635
(kC, Hex)  y = 7.642857z + —28.67929  0.8317972
(AKC, 4)) y = 5.6z — 19.804 0.8443055 ]
(AKC, £o0) y = 4.869565z — 16.41565  0.8426523
(AKC, Hex)  y = 5.473684x — 19.28316  0.6431602 L . . . . ‘

3.5 3.7 3.9

Fig. 4. Optimal lines obtained with block-norm residuals for the stars data set. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

where (A, p)-omp(x.4) is the solution to the Problem (16) with resid-
uals measured with the polyhedral norm with unit ball B.

Proof. By Lemma 3.1 the goodness of fitting index GoFg . can be
computed as:
q)*

GoFgp, =1—- — ,
®e ming,p P (kplx1q — Pol, .. ., kBlXna — Bol)

(30)

_ 1
where «p = =T . .

Observe that since B is a polytope then the above maximum is
attained in an extreme point of B and thus x5 =

Next, Problem (16) in this case can be expressed as:
n
kg-min Y  Ailx4 — Bol®..
B ﬂUERE z| d /30|(1)

Recall that this is a (A, p) Ordered median problem and that its op-
timal solution, a (A, p)-omp, can be easily obtained by the result
in Theorem 3.2. Replacing the optimal solution to this problem in
(30) it results in:

qyk
- ma
Yot [xig — (A, p) —omp(x )P &=1...

Note that for A =(1,...,1) the (A, 1)-omp is the standard
median point and thus the expression Y1 ; |x;y — median(x.4)| is
what it is usually called the mean absolute deviation with respect to
the median.

The same dataset used in Example 3.3 allows us to show
the expressions of the optimal fitting hyperplanes when different
block-norm residuals are considered:

GOFq;.yE =1-

Example 4.5. We consider again the stars data used
in Example 3.3. In this case, we run our implementa-
tion in R for ¢;-norm, ¢.-norm and hexagonal norm (as
the one used in Nickel and Puerto (2005) with Ext(B) =
{£(2,0),+£(2,2),+£(-1,2)}) residuals. This last choice is in-
cluded only for illustrative purposes of the presented methodology
and by its applicability in LA, although its statistical meaning may
need further investigation. We also note in passing that the use
of different metrics, based on geodesic of the considered space, is
natural in geodesic regression (Fletcher, 2013). We use four dif-
ferent criteria: overall SUM (A =(1,...,1) and p = 1), MAXimum
K n-K
(A=(1,0,...,0) and p=1), K-centrum (A= (0,...,0,1,..., 1))
for K= |0.75n] (the model will minimize the sum of the 25%
K n—K
greatest residuals) and anti-K-centrum (A = (1,..., 1,0,..., 0)) for
K =10.5n] (the model will minimize the sum of the 50% smallest

residuals). The results for all the combinations and the graph for
the K-centrum lines are shown in Fig. 4.

Note that different situations may happen when running the
different models: in the case of the SUM criterion the models for
¢; and hexagonal residuals coincide; for the MAX criterion the
three optimal lines are the same, and for the K-centrum and anti-
K-centrum the three models are different. Furthermore, even in the
case when the models coincide, one may have different goodness
of fitting indices due to the different way of measuring distances
(see the ¢; and hexagonal residuals for the MAX criterion).

From the above, we observed that the GoF are not comparable
when different residuals are used in the models since the value
given to the residuals (both with respect to the best model and
with respect to the simplified model with only intercept) is dif-
ferent. Thus, the generalized coefficient allows us to compare the
goodness of fitting between models provided that the distance (to
measure the residuals) and the aggregation criterion are fixed.

5. Fitting hyperplanes with ¢, distances

In this section we deal with the general problem of locating a
hyperplane with respect to a set of points and we present a suit-
able mathematical programming formulation for computing the
optimal hyperplanes when the residuals are defined as ¢;, T>1,
distances. Recall that for any z=(zq,..., z4)! € RY the ¢;-norm,
T >1, is defined as:

1

d T
> lzl” if T < oo,
lzll- = § \i&

if T =o0.
From this norm we denote by Dy, (z,¥) = ||z —y||. the ¢,-distance
between the points z,y € RY. The well-known Euclidean distance,
that measures the straight line distance between points, is the ¢;-
norm in this family. Note that the extreme cases of ¢; and ¢4, rep-
resent both block and ¢;-norms, since their unit balls are polytopes
but also fit within the family of ¢;-norms.

We recall that according to Eq. (4) in Lemma 2.1, for any
T=LeQ with r>sez;, gd(rs)=1 and H(B)={y' eR?:

(1.y)B =0}, then Dc(z H(B)) = L,
1

141 -1 (for t =1, v =00 while for T =00, v=1).

In this section we assume that the residuals are defined
as the shortest distance from the points to the fitted hyper-
plane, namely, for a given point £ = (1,%;,..., %)t the residual is:

£3(B) =Dz (R_o. H(B)).

where v is such that
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Let {x1,...,x} c R9*1 be a given set of points, A e R", Tt =L ¢
Q with r>seN and ged(r,s) =1, and |||z, a ¢¢-norm in R%, It
follows from the discussion above that under these hypotheses,
Problem (1) is equivalent to the following mathematical program-
ming problem:

®; :=min) 1,0, (31)
=1

s.t. (8)—(13), (20)—(21),
1B-ollv =1. (32)
Yik € {0, 1}, 0y = 0, Ay <0,
Zis >0, i,k=1,....,n, Ay>0
BeRM >0 i=1,...,n

Note that the above problem is nonconvex for 1<t <oco be-
cause of the binary variables and constraint (32). One could try
to solve Problem (31) using algorithms available in different non-
linear optimization solvers, although no guarantee of optimality is
provided (e.g., NLOPT, BARON, Minotaur, ...). In what follows we de-
scribe an accurate approximation alternative based on the results
in Section 4.

Let P be a polyhedron such that Pc B={zeR?: |z, <1},
and denote by rp=supy, -1 llzllv (note that by construction
rp<1). Observe that rp is the radius of the smallest ¢,-ball con-
taining P. In addition, let Q be a polyhedron such that B c Q, and
denote by Ry = inf”zHQ=1 llz|l» (note that by construction Ry >1). In
this case Ry is the radius of the largest £,-ball contained in Q.

For a generic polyhedron P, let &p = (g1 p, ..., &5p)t, With &;p =
Dp(xi _o.H), i=1,...,n. Analogously, let &, = (&1,4,,---, enep ),
with &;,, =D, (X; 0. H), i=1,....n. Let §=1ecQ with r,se
7Z\{0} with gcd(r,s) = 1.

The following result states the relationship between the objec-
tive values obtained when using either ¢; or the block-norms in-
duced by P and Q to define the residuals in our models.

Theorem 5.1. Let Aq,..., An >0 and the aggregation function
D(eq,....e0) =30, Aiefi) then:

Dlep) < Der,) = 5P (ep) (33)
P

L ®(e0) = B(e,) = Bleg) (34)

Q

Proof. By the relations between the norms, it is clear that
Izllp = llzllv = rplizllp. Let #(B) ={zeR?: (1,2)8 =0}. Then, for
any x € RY, the above relationships imply the following inequalities

relating the distances with respect to || - ||po-residuals and ||-||--
residuals:
tx tx
Dro(x o, H(B) = XL o BN o upy)
1B-ollr ~ IIB-ollv
and
|B'x| |B'x] 1
D (x_0, H(B)) = < < —Dpo(x_0, H(B))
<O M) = g = B ol = 7o 0 HB
Let us consider the aggregation criterion ®(eq,..., €n) =

>y kiefi). Its evaluation with respect to the residuals computed
with the polyhedral norm with unit ball P and the ¢;-norm,
namely &; p = Dp(x; o, H(B)) and &;,, = D¢ (x;_o, H(B)) foralli=
1,...,n, satisfies:

1

D(ep) < P(ey,) < r—SCD(eP).
P

This equation proves (33).

Next, by definition of Q, it is clear that |z||q < ||z]lv <Rgllzllo.
Now, using an argument similar to the one above we conclude
that

t t
Do(x.0, #(B)) = B! |Bx|

= > D (x_o,
1B olla = TBoll, = D x-0 (B

t t
_Bx o 1x 1
IB-ollv ~ RallB-ollv ~ Ro
From these inequalities it clearly follows (34). O

Dq (X-0, H(PB)).

Let Py be a symmetric with respect to the origin polytope with
N vertices, {p1,...,pn}, inscribed in the ¢, hypersphere B = {z ¢
R?: |z||y = 1} and let rp, be the radius of the smallest ¢, ball cen-
tered at the origin containing Py. Let Ro, = LN and denote by Qy

Tp
the Rq, -dilation of Py. By construction Py c B c Q. Hence, for the
globalizing function ®(eq,...,&x) =YL, Aiefi), by Theorem 5.1,
we get that:

max {Cb(ep,v), R}SCD(EQN))}
o

. 1
< ®(&(,) < min {fD(eoﬂ), 8<I>(epN)}
5,
Furthermore, by Lemma 4.3, since Qy is a dilation of Py, both
problems have the same optimal solutions and ®(ep,) = rﬁ@(eQN).
Hence,

1
D(ep,) < D(er,) < 5 D(ep,).
B
It is clear from its definition that rp, determines the approxima-
tion error whenever a ¢,-norm is replaced by a polyhedral norm
with unit ball Py and it can be explicitly computed.

Lemma 5.2. Let P={zeR?:ax<b; i=1,...,N} be a polytope,
then:

Proof. First, note that rp = sup 1 l|zllv = max,_; lIz[lv by the
compactness of P. Thus, rp is the ¢,-inradius of P. Next, by
Mangasarian (1999), the radius of a ¢, ball centered at the origin
and reaching the facet {x e R?: aix < b} of P is the ¢, projection
|bi|
llaill<
mum of those distances among the N facets defining P. O

of the origin onto that facet, namely . Hence, rp is the maxi-

Next, we can obtain from the above discussion a lower bound
for ;.. the optimal value of Problem (31). Indeed, it follows that

1
pr <@ < <p, (35)
Tp
where
n
p* :=miny A0, (36)
j=1
s.t. (8)—(13)
& > | Bxil, Vi=1,...,n, (37)
1B-ollp, =1, (38)

Yk € {0, 1}, oy > 0, Ay <0,
Zig, tr=0, L,k=1,....n, Ay>0

BeRH >0 i=1,...,n
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Table 1
Estimated models with minisum criterion in Example 3.3.
T N B o GoF Re p Time  SD
1.5 16 (36.87, -1, 0.14) 771857 0.6505 0.9848 1.015 1.0 7.26 x 102
80 (36.84, —0.99, 0.14) 771324 0.6508263 0.9993 1.0006 197 6.06 x 106
320 (36.83, —0.99, 0.14) 771117 0.6509203 0.9999 1.0000 14.16 9.41 x 10~°
2 16 (36.87, -1, 0.14) 771857 0.6505 0.9807 1.0195 1.04 7.87 x 1073
80 (36.19, —0.98, 0.14) 76.3703 0.654276 0.9922 1.0007 2.01 1.91 x 1077
320 (36.19, —0.98, 0.14) 76.3700 0.654277 0.9999 1.0000 16.53 1.64 x 1077
3 16 (34.35, —0.96, 0.16) 74.7283 0.6617 0.9801 1.0202 1.07 4.56 x 1073
80 (34.09, —0.95, 0.16) 741627 0.66427 0.9992 1.0007 2.04 3.50 x 106
320  (34.08, —0.95, 0.16) 741468 0.6643 0.9999 1.0000 17.48 4.68 x 10710
6.5 T T T T T 6.5 T T T T T T 6.5 T T T T
6 * 1 6 *° 1 ef *® 4
55 ?" 1 55 _‘_-' 1 s5f B
451 .E 1 as5p .E 4 asf 1
4 '%‘I) 3.‘7 'f“] * -'l‘l -1"3 415 4]7 4“] 4 ‘l"y '3‘7 1“) * -1‘1 ‘4“1 -1"» 4‘7 -1.‘!) 4 '315 3.‘7 ‘3‘(1 * 4‘1

Fig. 5. Estimated lines for the data in Example 3.3 approximating by a {16, 80, 320}-gon. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

For a given finite set of input points, the proposed polyhedral
approximation of a ¢;-norm may be exact for an adequate choice
of the block-norm. Indeed, this norm must have as fundamental
directions the vectors defining the optimal ¢,-projections of each
input point onto the optimal hyperplane.

Corollary 5.3. For any data set {x;, ..., x,} c R and any ¢;-norm
with 1 < T < +oo there exists a polyhedral norm ||-||g whose unit ball
B has at most 2n extreme points and such that the optimal values of
the problems (31) and (24) coincide.

In Love and Morris (1972) the authors propose a measure of
the quality of the approximation of a given norm by another norm.
This measure was defined in order to quantify the approximation
errors when modeling road distances between cities. We adapt this
measure to evaluate the approximation errors induced whenever
the ¢;-norm is replaced by the polyhedral norm with unit ball the
polytope P:

Z": (De (xi, B) — Dp(xi, B))*

SD. p(B: {x1. .. D- (x;, B)

X)) =
i=1

D: (xi,8)>0
Example 5.4. Let us consider again the stars data from
Example 3.3. We run now the models using as aggregation
criterion the overall sum of the residuals (& =SUM) and the
errors are the ¢; projections of the points onto the optimal line,
for T €{1.5, 2, 3}. The estimations for the aggregation criterion
® =SUM and their goodness of fitting (GoFg, ) are shown in
Table 1. The lines are drawn in Fig. 5.

Observe that for this data set, getting high accuracy for the ¢-
norm residual problems is possible using small number of vertices
(N) in the approximation by polyhedral norms. As expected, in-
creasing the number of vertices improves the accuracy, at the price
of increasing the computation times.

We also computed the optimal lines for different aggregation
criteria (® € {SUM, MAX, kC, AkC}) with ¢, residuals, t €{1.5, 2, 3},
using the polyhedral approximation approach with N =480 ver-

tices. The results are shown in Table 2. The reader may observe
from these results that the approximation error, although tiny, de-
pends both of the chosen residuals and aggregation criteria.

Finally, we compare our approximation scheme for ¢; residuals,
on this data set, with other available implementations. Orthogo-
nal Distance Regression (ODR) is a particular case of our general
framework where ¢, residuals are chosen and & is the sum of
squares criterion (note that both approaches coincide when the co-
efficient of the dependent coordinate is non zero while such an as-
sumption is not imposed in our models). The package pracma in R
permits to compute ODR by using an approximated iterative proce-
dure (see Boggs and Rogers, 1990). The models obtained with both
approaches are shown in the following table. We observe that, for
this data set, our approach to approximate ¢, distances by poly-
hedral norms (with N = 320 vertices) has a better performance on
the global error measure of the models (although the models ob-
tained by both methods are almost the same):

ODR SOS-¢, (SD=9.93 x 10-11)

Model
Global Residuals

y = —7.05736x + 35.42935
3.959383

y = —7.098062x + 35.60477
3.662783

6. Experiments

In this section we report the computational results of the pro-
posed methodology. We combine several aggregation criteria and
norm-based residuals to find different optimal hyperplanes. Our
aim is to show the powerfulness of modern mathematical pro-
gramming in its application to the considered problem and to com-
pare the behavior of different models rather than gaining insights
into their statistical meaning, which is beyond the scope of this pa-
per. Our formulations have been coded in Gurobi 6.0 under R and
executed in a PC with an Intel Core i7 processor at 2 x 2.40GHz
and 4 GB of RAM. Overall, we compared 42 methods which results
from: 1) the combination of 7 aggregation criteria: SUM (summa-
tion), MAX (maximum), MED (median), kC (summation of the k
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Table 2
Optimal lines for different criteria and ¢; residuals of Example 5.4.
lis %) {3
SUM  Line y =5.92x — 21.1016 y = 6.75x — 24.6975 y =7x—2581
GoF 0.6643 0.6542 0.6509
SD 3.36 x 1010 1.73 x 1010 1.65 x 1079
MAX  Model y=-3.2307x+18.7757 y=-3.2307x+18.7757 y=—3.2307x + 18.7757
GoF 0.5805 0.5544 0.5381
SD 4,07 x 101 1.90 x 10-12 3.85x 10-1
kC Model —y=-28133x+16.9367 y=—3.1756x+18.5100  y = —4.3076x + 23.0334
GoF 0.5111 0.4790 0.4650
SD 351 x10-13 7.53 x 10710 9.70 x 10-10
AKC  Model y=6.75x —25.0875 y =6.5555x —24.1533  y =5.175x — 17.7146
GoF 0.8092 0.82512 0.8217
SD 7.15 x 1010 2.10 x 1079 5.49 x 1010
Table 3 ) o We get the fitting model for each one of the considered com-
fe"srir(lltl’g‘lz“"“s of chosen aggregation criteria and binations (overall 42 models). Due to limitation of space in this
) paper, the complete results are available as a supplementary elec-
Aggregation criteria Residuals tronic material (see Appendix A). For each model we report: 1)
n the goodness of fitting index GoF, 2) the percentage of the sam-
SuM ;6" v ple data which are contained in a strip delimited by two parallel
MAX max &; 6 hyperplanes to y = Bx with (orthogonal) distance & = 10 (%), and
MED median(er. ... &) b 3) the width of the strip that is necessary to include 90% of the
0.5n] data (egp).
ke 21: o & We conclude from these results that, in general, a better per-
T formance is observed in all the methods when the corrupted co-
AkC iZLEME“) t ordinate is the dependent one (Y), as compared with introducing
505 iez , the perturbation on the independent coordinate (X). In particu-
el } lar, the use of the SUM, the 1.5SUM and the kC criteria (for ver-
L55UM ié‘% tical distance residuals) emplr_lcally implies better n'qoc.lels in the
& Y-corrupted case. Although slightly better, almost similar results

largest), AKC (summation of the k smallest), SOS (sum of squares)
and 1.5SUM (sum of residuals raised to the power of %); and 2) six
different modes to measure the residuals: V (vertical distance) and
¢z (£r-norm distance for T =1, % 2, 3, +00). See Table 3.

All experiments were run with a CPU time limit of one hour.
The necessary computing times depend very much of the chosen
model and, for our instances, range from a few seconds, for the
simplest ones, to close to one hour, for the most difficult ones.

We tested the models on two different types of datasets: ran-
domly generated data and a real-word benchmark dataset. The first
one will allows us to analyze the performance of the different
models in terms of their ability to detect the trend of the dataset.
The second one permits to check whether the use of different ag-
gregation criteria and residuals is useful in practice.

6.1. Synthetic experiments

The first set of results is built on randomly generated points
following a similar scheme to those proposed in Bertsimas and
Mazumder (2014). We generated n = 100 data points in dimen-
sion de{2, 4}, {x.....x,} SR as follows. Each x;, follows an
independent and identically distributed Gaussian distribution with
mean 0 and standard deviation 100. We fix B =(0,1,...,1)
R%+1, The last coordinate, x4, is chosen as the response and we
generate it as:

d-1
Xig =— ) X+, Vi=1,....n,
k=1

where u; is also generated as a Gaussian distribution with mean 0
and standard deviation 10.

Then, 15% of the data are now corrupted by adding an extra
Gaussian term (with mean 0 and standard deviation 500) to: (1) all
the components except the last one or (2) to the last coordinate.

were obtained for models based on AkC, MEDIAN and kC (for ¢
residuals) due to their stability against extremal observations. Fi-
nally, we also point out that for the X-corrupted case, all models
(except the AkC) coincide under the use of residuals measured by
V, ¢1 and {. This is not the case for the results with Y-corrupted
data, where equal or similar models were obtained for all the ¢-
residuals.

Similar conclusions can be derived from the multivariate case
(d = 4), except that in this situation there are no coincidences be-
tween the models obtained with different combinations of criteria
and residuals. Furthermore, the convenience of using goodness of
fitting measures which are not criterion/residual dependent is con-
firmed.

6.2. Data: Durbin-Watson

We also performed some experiments over the classical real
data sample used in Durbin and Watson (1951). The data aims
to analyze the annual consumption of spirits from 1870 to 1938
(n=69) from the incomes and the relative price of spirits (de-
flated by a cost-of-living index). Hence, the variables observed in
this data sets are the logarithms (the coefficients are then inter-
preted in terms of percent change) of the following measures: X;
(Real income per head), X, (Relative price of spirits) and X3 (Con-
sumption of spirits per head).

For illustrative purposes, we analyze both the global model
with the three variables (d = 3) and the bivariate model consid-
ering X; and X3 and obviating X, (d = 2).

6.2.1. Bivariate model

For the case d =2, the obtained hyperplanes are detailed in
Table 4 and they are drawn in Fig. 6. Note that the methods that
use vertical distance residuals (V) were not able to capture the ac-
tual behavior of the consumption with respect to the incomes. Fur-
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Table 4
Estimations for the bidimensional Durbin-Watson’s dataset.
\% 0 leo
SUM (4.0898, —1.1454, 1) (10.8840, —4.6184, —1) (8.9764, -3.6797, 1)
MAX (1.6986, —0.0196, —1) (1.6986, —0.0196, —1) (-0.5963, 1.1530, —1)
SOS (2.9993, -0.6309, —1) (13.5934, —-6.0703, 1) (7.0978, —2.7353, 1)
1.5SUM  (4.0730, —1.1566, —1) (10.6113, —4.5067, —1) (7.9926, —3.1851, —1)
kC (5.5288, -1.9236, —1) (8.7033, —3.5303, - 1) (7.6654, —2.9977, -1)
AkC (2.7467, -0.4031, -1) (17.1272, -7.6311, -1) (18.4349, —8.2833, 1)
MED (2.4167, -0.2310, - 1) (28.0156, —13.0469, —1)  (23.4462, -10.7748, -1)
lis 2 5]
SUM (10.8840, —4.6184, 1) (10.8746, —4.6138, —1) (9.8917, —4.1344, -1)
MAX (1.6986, —0.0196, —1) (-0.5963, 1.1530, - 1) (-0.5963, 1.1530, 1)
SOS (13.1400, —5.8376, —1) (10.9561, —4.7162, —-1) (8.7832, —3.6006, —1)
1.5SUM  (10.4466, —4.4233, 1) (9.6868, —4.0399, —-1) (8.9821, -3.6851, 1)
kC (8.0130, —3.1750, —1) (8.0455, —3.1914, 1) (8.5389, —3.4427, -1)
AkC (13.9827, -6.0670, —1) (21.0745, —9.6064, 1) (20.6955, —9.4349, —1)
MED (24.0656,-11.0819, —-1)  (6.4510, —2.4601, —1) (28.0150, —13.0466, —1)
2.5 2.5 2.5
21 21 21
1.5} 1.5} 1.5}
1L |~ SUM-V 1L |~ SUM-4 1b |7 SUM-ly
— MAX-V — MAX-( — MAX-l
— SOS-V — S0S-¢; — SOS-lo
— 1.5SUM-V 1.5SUM-{; —— 1.58UM-{o,
05F |— kC-V B 05F [— kC-ty 05F |— kC-fy
AkC-V AkC-t, AkC-lo
-- - MED-V -- - MED-/; -- - MED-/
1 1 1 1 1 1 1 1 1
00 0.5 1 1.5 2 2.5 00 0.5 1 1.5 00 0.5 1
2.5 2.5 2.5
2 . 2 20
1.5F 1 1.5 1.5
b | SUM-ty5 | b [ SuM- b [ SuM-t
— MAX-l 5 — MAX-l, — MAX-l3
— SOS-4; 5 — S0S-4y — S0S-/3
— 1.5SUM-4; 5 — 1.5SUM-/¢, —— 1.5SUM-{3
05F [— kC-ly5 1 0.5 —  kC-£y 0.5 ——  kC-f3
AkC-fy 5 AkC-£y AkC-43
-- - MED-4; 5 -- - MED-/, -- - MED-/3
1 1 1 I} 1 1 I}
00 0.5 1 1.5 2.5 0O 0.5 1 1.5 2 2. 00 0.5

Fig. 6. Estimated lines for the data in Durbin and Watson (1951).

thermore, the MAX criterion seems to fail for any choice of resid-
uals, since it tries to accommodate the unique outlier point that
exists in the data set. The rest of the hyperplanes have a similar
behavior. In order to analyze the differences between these mod-
els we also report, in Table 5, the marginal variations of each one
of the models (according to Lemma 2.1).

Observe that, when the ¢; residuals are considered, all except
the MAX criterion provide a O marginal variation. This pattern
can be explained as a result of Lemma 2.2 and the fact that the
¢q-norm unit ball in R? has extreme points {+(0, 1), £(1, 0)}.

Table 5
Marginal variations for each of the models.
\Y €1 oo l15 £y {3

SUM -11455 0 -0.7863  -0.0464 -0.2070 —0.4395
MAX -0.0196 -0.0196  0.5355 —0.0196  0.4949 0.5151
NN -0.6309 O -0.7322 -0.0291 -0.2029 -0.4597
1.5SUM  -11566 0 -0.7610  -0.0505 -0.2332 -0.4564
kC -19236 0 —0.7498  -0.0961 -0.2853  —0.4660
AkC -04032 0 -0.8922  -0.0270 -0.1029  -0.3147
MED -02310 0 -09150 -0.0081 -03488 -0.2711
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Table 6
Summary of k-fold cross validations experiments for the bidimensional Durbin-Watson’s dataset.
\% 0 Lo b & 03
SUM min ggp 0.1590 0.0560  0.0702  0.0491 0.0459  0.0560
max egg 03049  0.1645 0.1444 0.1477 0.1480 0.1480
medianegy 02366  0.0983  0.0923  0.0881 0.0828  0.0983
290 02330  0.1027 0.0982 00958  0.0959  0.1021
MAX min &g 0.1262 0.1274 0.1262 0.1262 0.1262 0.1274
max £go 0.3955 0.3955 0.3663 0.3663 0.3663 0.3955
medianegy 03664 03664 03621 0.3621 0.3621 0.3664
90 0.3337 0.3338 03222 03222 03222 03338
e min ggo 0.1372 0.0844 00566 00568 00633  0.0793
max £gg 0.4072 0.1264 0.1163 0.1202 0.1235 0.1253
medianegy 02878  0.0962  0.0983  0.0879  0.0961 0.0961
a0 0.2980  0.1005 0.0973 0.0900  0.0905  0.0983
15SUM  mineg 0.1437 0.0476 0.0488  0.0524  0.0499  0.0478
max £gg 0.3091 0.1353 0.1199 01254 0.1308 0.1334
medianegy 02260  0.0834  0.0852  0.0910 0.0885  0.0841
£q0 0.2349 0.0922 0.0872 0.0869 0.0884 0.0917
kC min ggp 0.1236 0.0414 0.0655  0.0495  0.0480  0.0412
max egg 0.2843 01220 0.1147 0.1163 0.1185 0.1219
medianegy  0.1281 0.0837 0.0837  0.0851 0.0851 0.0855
290 0.1511 0.0827 0.0834  0.0800  0.0809  0.0821
akC min ggp 04482  0.0421 00429 00367  0.0892 00484
max egg 0.6677 02039  0.1853 0.2122 04654  0.1981
medianegy  0.5162 0.1722 0.1296 0.1605 0.1534 0.1466
890 05282  0.1434 0.1338 0.1417 0.1914 0.1373
MED min &g 0.4275 0.1182 0.1147 0.0979 01182 0.0615
max £go 0.6375 0.2170 0.4612 0.2203 0.2137 0.2101
medianegy 05503 01712 0.1761 0.1701 0.1393 0.1565
90 0.5406  0.1651 02093 01614 0.1501 0.1478
Hence, To illustrate the quality of the optimal hyperplanes, in Fig. 7 we
show the values of the consumptions versus the actual consump-
1 if B3 = max{|Bil. |B5l}. tions for the first random fold in the experiments (in the validation
k(B)=1-1 if B3 = —max{|B1].|Bs]}. sample that was not used to compute the hyperplanes).

0  otherwise.

Thus, the marginal variation of X; with respect to X3 is zero iff
|B1] = max{|B1], |B3|}, being then |B3| <|B1]. Observe that the lat-
est implies that if the fitting line is rewritten in the form X3 =
Yo + ¥1X7, the absolute value of the slope of the line, |y, is
greater than 1, being then the percent decreasing (or increasing)
of the consumption (X3) in term of the incomes (X;), more than
100%.

In order to validate and analyze the stability of the com-
puted hyperplanes we perform a k-fold cross validation scheme
(Stone, 1974) to the data set. Such a method consists of randomly
partitioning the sample into k folds of similar size, Sy,...,S,. For
each j e {1,...,k}, each optimal hyperplane is computed using the
points in J;;S; and §; is used to validate the results. In our case,
we partitioned the data into k = 7 folds, each of them with 10 data,
except one with 9 points. In Table 6 we summarize the results ob-
tained with this experiment. We report: the maximum, minimum,
median and mean width of the strips that are necessary to cover
the 90% of the (validation) data for the seven runs.

From the above results, we observe that the models that use
vertical distance residuals need, in general, larger strips to cover
the 90% of the points. The strips are particularly large for the ME-
DIAN criterion, where the widest strips were obtained. This con-
clusion is justified since the quantile criteria accommodate a single
point, but do not take into account the deviations to the remain-
ing elements in the data (apart from the ordering in the residuals).
Also, for the same reason, the conservative MAX criterion makes
the models to require wider strips. The residuals that produce the
smallest range between the maximum and minimum length of the
strips, are the ¢, ¢15, and ¢3; and for these type of residuals the
K-centrum (kC) criterion gets the best results.

The conclusions are that the models that use V and ¢..-based
residuals do not fit well to the actual trend of the validation data.
The same conclusion also applies to the models that use the MAX
criterion. On the other hand, all the models based on ¢.-residual
seem to fit quite-well to the data. As expected the kC and AkC cri-
teria, which are known to be robust against extremal observations,
actually capture the main information about the trend.

6.2.2. Complete models

We also performed the same experiments using all the vari-
ables: X; (incomes), X, (prices) and X3 (consumptions). The op-
timal hyperplanes are shown in Table 7 (since the coefficients are
non zero they were divided by — 85 resulting in simplified models
in the form X3 = By + B1X1 + B2X2.)

The summary of the results of the k-fold cross validation
scheme (where the dataset was partitioned exactly as in the bivari-
ate case) is shown in Table 8. Fig. 8 shows the values of the con-
sumptions versus the actual consumptions for the first random fold
in the experiments. From the results, one can observe that includ-
ing all the variables in the model reduces the differences among
the different methods. In this case, the consumption seems to be
well linearly described by the incomes and prices. This conclusion
is supported both by the projection and by the summary of k-cross
validation experiments. The exceptionally bad performance of the
MAX criterion in the bivariate case, is now as good as the rest of
the criteria. In addition, the inclusion of prices in the model fixes
the, in most cases, senseless signs of the coefficients in the bivari-
ate models in Table 5. One can observe that in those cases an in-
crease of the incomes would predict a decrease of the consump-
tions.
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Fig. 7. Responses in the dependent variable by residuals for the bivariate case (SUM: red, MAX: blue, SOS: green, 1.5SUM: yellow, kC: black, AkC: orange, MEDIAN: gray).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

oo

(4.555,0.0587, —1.3623, —1)
(4.6159, —0.013, —1.3273, -1)
(4.404,0.1369, —1.3881, -1)
(4.404,0.1369, —1.3881, —1)
(4.4905, 0.0635, —1.3425, —1)
(4.4521,0.0585, —1.3197, -1)
(4.5075,0.0634, —1.3476, —1)

(4.1367,0.3502, —1.4305, —1)
(4.1355,0.5086, —1.5758, —1)
(4.404,0.1369, —1.3881, -1)
(4.404,0.1369, —1.3881, —1)
(4.3334,0.1325, -1.3317, -1)
(4.4688,0.0535, —1.323, 1)
(4.3559,0.1431, —1.3489, —-1)

l3

(4.472,0.0633, —1.331, -1)
(4.3938,0.1107, —1.3377, -1)
(4.3498,0.1131, -1.3201, —1)
(4.0853,0.4429, —1.4891, —1)
(3.5719,1.1094, —1.8642, —1)
(4.1579,0.467, —1.5434, —1)

Table 7
Estimations for the Durbin-Watson’s dataset.
\% £
SUM (4.4817,0.0696, —1.3374, —1)
MAX (4.5227,0.0646, —1.3519, —1)
SOS (3.9725,0.0331, —-1.0692, —1)
1.5SUM  (4.404,0.1369, —1.3881, 1)
kC (4.4159,0.0288, —1.2753, -1)
AkC (4.4355,0.0655, —1.3183, -1)
MED (4.4288,0.0488, —1.2979, -1)
lis %3
SUM (4.4445,0.0698, —1.3242, -1)
MAX (4.4155,0.0352, —1.2797, -1)
SOS (4.3498,0.1131, -1.3201, - 1)
1.5SUM  (4.2123,0.4308, —1.5386, —1)
kC (5.2647, -0.6758, —1.0312, -1)
AkC (4.1061, 0.5015, —1.551, —1)
MED (4.3576,0.2689, —1.4559, —1)

(4.0772,0.4066, —1.4415, -1)

(4.4922,0.0619, —1.3386, —1)
(4.2655,0.1691, —1.3326, 1)
(4.3498,0.1131, —1.3201, 1)
(3.6048,0.7761, —1.5744, —1)
(3.4912,1.0623, —1.7796, —1)
(4.2963, 0.3239, —1.4761, 1)

(76.3635, 25.0913, —61.4268, —1)

6.3. Scalability

Finally, we would like to add some comments on the scalability
of the proposed methods. As observed from the computational ex-
periments, our formulations work well in the range of several hun-
dreds of points regardless of the dimension of the space (within
a reasonable limit). This is partly induced by the use of sortings
in the aggregation criteria. Moving up to the range of thousands
requires some further extensions by aggregation techniques (see
Francis et al., 2000) that are beyond the scope of this manuscript.
In spite of that, we have included an illustrative example with sev-
eral thousands of points. Technical details on the accuracy of these
techniques will be the subject of a forthcoming paper.

Example 6.1. We have randomly generated 2000 points in R? with
the same setting that in Subsection 6.1, by corrupting the last coor-

dinate (X5). The points are drawn in the right picture of Fig. 9 and
are available at http://bit.ly/data2000. In order to show the scala-
bility of the proposed methodology we have implemented a ran-
domized aggregation technique based on Francis et al. (2000) to
the computationally hardest models, i.e., those where the aggre-
gation criterion is ®= AkC (with k = [0.5n]) and residuals mea-
sured with vertical distance V, ¢;-norm and ¢,-norm. We report in
Fig. 9 (left table) the estimated coefficients for the three models as
well as the best objective values found and the computation times
(in seconds) needed to obtain these solutions. As can be observed
in Fig. 9 (right), the solutions that result with the aggregation tech-
nique have a good performance in terms of the geometric fitting.
These techniques have been proved to find accurate solutions in
reasonable computing times, so the models proposed in this paper
are applicable to real-world datasets.


http://bit.ly/data2000
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Table 8
Summary of k-fold cross validations experiments for the Durbin-Watson’s dataset.
\Y% 0 loo {15 153 £3
SUM min €99 0.0369  0.0388  0.0315 0.0380  0.0346  0.0347
max €gg 0.0735  0.0741 0.0832  0.0743 0.0743  0.0732
medianggy  0.0629  0.0627  0.0647 0.0625 0.0625 0.0626
£90 0.0573  0.0598 0.0616 0.0580  0.0567  0.0593
MAX min £g9 0.0562  0.0515 0.0515 0.0515 0.0515 0.0515
max 9o 0.0807 0.0762  0.0760  0.0760  0.0760  0.0762
medianegy  0.0701 0.0607  0.0644 0.0644 0.0607 0.0607
€90 0.0678  0.0624  0.0641 0.0641 0.0624  0.0624
SOs min &g9 0.0255  0.0362  0.0310 0.0321 0.0327  0.0327
max €q9 0.0656  0.0683  0.0691 0.0678  0.0675  0.0675
medianegy  0.0586  0.0583  0.0568  0.0586  0.0581  0.0582
€90 0.0547  0.0541 0.0537  0.0543  0.0528  0.0529
1.5SUM  minggy 0.0262  0.0342 0.0292 0.0308 0.0314 0.0316
max €g9 0.0685  0.0709  0.0713 0.0691 0.0703  0.0703
medianggy  0.0617 0.0563  0.0587  0.0559 0.0556  0.0558
€90 0.0553  0.0547 0.0546  0.0527  0.0531 0.0532
kC min €99 0.0269  0.0368  0.0265  0.0251 0.0272  0.0272
max €g9 0.0650 0.0700 0.0698 0.0709  0.0709  0.0700
medianggy  0.0588  0.0564  0.0559  0.0559  0.0569  0.0571
€90 0.0514  0.0549 00536 0.0534 0.0538  0.0535
akC min €99 0.0349 0.0338 0.0360 0.0305 0.0256  0.0604
max €gg 0.1042 0.1041 0.1017 03524  0.1100 0.1303
medianggy  0.0906  0.0888  0.0820 0.0885 0.0676  0.0931
€90 0.0815 0.0799 0.0778  0.1115 0.0713 0.0923
MED min £g9 0.0342  0.0329 0.0346 0.0332  0.0429  0.0270
max g9 01064  0.0994 0.0997  0.1102 03410  0.3266
medianegy  0.0709  0.0872  0.0894 0.0649 0.0844 0.0714
€90 0.0738  0.0784 0.0794  0.0671 0.1215 0.1012
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Fig. 8. Responses in the dependent variable by residuals for the d = 3 case (SUM: red, MAX: blue, SOS: green, 1.5SUM: yellow, kC: black, AKC: orange, MEDIAN: gray). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Conclusions and further research

This paper generalizes previous attempts for modeling the
problem of fitting hyperplanes to a given set of points. This ap-
proach allows for the combination of distance-based residuals ag-

gregated by generalized ordered weighted averaging criteria. In
addition, we provide unified mathematical programming formu-
lations for all those models that allow one to use off-the-shelf
solvers to handle the resulting problems. Two important particu-
lar cases of residuals are analyzed in more detail, namely those
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Fig. 9. Estimations for the instance of Example 6.1.

induced by block-and-¢; norms for t >1. A new goodness of fit-
ting measure is also introduced for this framework, which extends
the classical coefficient of determination in least sum of squares
fitting with vertical distances. Some illustrative computational ex-
periments run in Gurobi under R are reported in order to illustrate
and validate the new methodology for computing optimal fitting
hyperplanes.

The results in this paper admit several extensions, still applying
similar tools. Among them, we mention the study of the statisti-
cal analysis of the generalized noise terms, on the original data,
that induce general norms residuals. In particular, we have con-
ducted some preliminary tests to analyze the empirical distribu-
tion of hexagonal (see Example 4.5) and ¢;-norm based errors
used in some of our computational experiments. We have com-
pared whether the errors induced by the LSS criterion with the
usual vertical distance and the sum criterion with the hex-and-
¢>-norms come from the same statistical distribution. Using the
Mann-Whitney U test, to compare if two samples are identically
distributed, we conclude that the three types of residuals come
from the same distribution (the three null hypotheses cannot be
rejected at a significance level of 5%). We have also raised the is-
sue of regularization, i.e., adding constraints to overcome ill-posed
data set, as well as the simultaneous computation of several (more

than one) hyperplanes to a given data set such that each single
point is “allocated” to its closest model, as in Bradley and Mangasar-
ian (2000). Another interesting extension is the use of mathemati-
cal programming tools to fit hyperplanes to binary data. The usual
techniques to estimate those models are based on likelihood esti-
mation since least squares estimation is known to get poor results
on this type of data. Here our proposal will fit in a natural way
and will deserve further attention.
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Results for bidimensional experiments corrupting the X variables.
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Results for bidimensional experiments corrupting the Y variables.
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Results for experiments for d = 4 and corrupting the X variables.

191

\"

4

loo

SUM

MAX

SOS

1.5SUM

kC

AkC

MED

SUM

MAX

SOS

1.5SUM

kC

AkC

MED

€90

GoF
%
€90

GoF
%
€90

GoF
%
€90

GoF
%
€90

(8.7754,0.2361,0.1242, —0.0645, 1)
0.0369

8%

285.1339

(11.2676, —0.8055, 0.4093, 0.3802, 1)
0.1200

2%

243.9038

(2.7637,0.1306, 0.06391, —0.0111, 1)
0.0409

6%

285.0815

(3.1382,0.1714, 0.0663, —0.03521)
0.0418

7%

282.7383

(—6.8937,0.1108, 0.0744, —0.0183, 1)
0.0258

8%

276.4327
(—29.5486,0.5489,0.2119,0.2342, 1)
0.1544

12%

304.1316

(11.3163, 0.5095, 0.5018, 0.0667, 1)
0.3706

9%

283.331

l15

(—25.3339,7.2803, 0.3850, —6.5208, 1)
0.3973

12%

167.1534

(—76.9688, 2.1455, 2.9597, —4.6480, —1)
0.5510345

6%

164.3572

(—19.8365, —24.1780, —1.6843, 23.0309, —1)
0.6391

9%

159.013

(27.4692, 14.0582,1.0081, —12.9659, 1)
0.5314

10%

162.8882

(31.8219, 41.5015, —5.2288, —30.4070, 1)
0.3916

5%

165.793

(7.9530, —1.6065, 0.3482, 0.8960, —1)
0.7403

7%

180.9401

(—28.1536, —1.9062, —0.5785, 0.5246, —1)
0.8278

9%

237.8898

(—-167.9861, 32.8678, —11.1472, —15.3593, 1)
0.3527

9%

172.616

(95.4943, —2.3074, —2.7088,4.5984, 1)
0.5037

9%

160.86

(-35.0079, —17.4180, 5.1138, 8.8243, —1)
0.5787

9%

170.37

(21.9152, —18.9245, 5.5144,9.6284, —-1)
0.4776

8%

167.7096

(—-34.1432, —-15.4977, 4.3066, 7.9523, —1)
0.3487

8%

168.3023

(11.5813, 2.8055, —0.1579, 0.1805, 1)
0.8716

5%

306.9669

(15.2913, —1.38181, —0.1062, 9.6624, 1)
0.8308

11%

251.5948

£

(—25.3339,7.2803, 0.3850, —6.5208, 1)
0.4630

12%

167.1534

(—76.9688, 2.1455, 2.9597, —4.6480, —1)
0.6096547

6%

164.3572

(—37.1798, —20.6518, —4.8914, 22.4924, —1)
0.7149

9%

160.1321

(27.4555, 14.0608, 1.0082, —12.9683, 1)
0.6059

10%

162.8875

(2.4227,14.3655, 4.4768, —15.4827, 1)
0.4629

7%

168.1855

(—25.2618, —1.0371, —1.4553,0.7368, —1)
0.8148

1%

244.0442

(—51.5261, 1.9897, 1.0285, —0.5282, 1)
0.8575

8%

305.539

(19.6624, 1.9411, 1.4336, —2.6949, 1)
0.7030

15%

166.2396

(76.9688, —2.1455, —2.9597, 4.6480, 1)
0.7852

6%

164.3572

(14.4492,2.3985, 1.8254, —3.4712,1)
0.9085

8%

165.6255

(—20.1562, —2.0728, —1.5407, 2.9444, 1)
0.8349

14%

165.9725

(5.0421,2.0898, 1.4381, —-2.8638, 1)
0.6984

15%

169.65

(2.7269, 1.0225, 0.9985, 1.0072, 1)
0.9950

82%

496.6216

(2.3001, 1.0447, 1.0149, 1.0033, 1)
0.9941

80%

497.3323

{3

(—48.9741, —2.5251, —1.5173, 3.4889, —1)
0.5446

1%

163.8287

(—76.9688, 2.1455, 2.9597, —4.6480, —1)
0.677138

6%

164.3572

(16.2930, 4.1351, 2.2042, —5.3890, 1)
0.7921

4%

165.3201

(—20.4048, —3.2308, —1.6763,4.1796, —1)
0.6909

5%

164.1443

(6.6713, —3.7849, —1.5627,4.3751, —1)
0.5440

4%

165.9668

(40.7617, —1.6662, —0.5106, 0.5624, —1)
0.8817

9%

231.9954

(6.9522,1.2873,1.0511, —0.1044, 1)
0.8941

14%

350.0691
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Table A.12
Results for experiments for d =4 and corrupting the Y variables.
\Y% 0 loo

SUM ﬁ (1.9468, 0.9648, 0.9899, 1.0058, 1) (—1.9158, —1.1083, —0.8751, —3.3186, —1) (1.6655, —1.0083, —1.0530, —1.0446, —1)
GoF  0.5999 0.6538 0.9006
% 78% 14% 76%
€90 123.5456 149.6274 121.8106

MAX B (1-04.7766, —1.0780, —2.8506, —0.8355, —1) ~ (120.6153, —1.4207, —5.5268, —0.7782, -1)  (54.3395, 2.3207, 6.0411, 3.4977, 1)
GoF  0.3357 0.8267 0.9078
% 12% 7% 12%
€90 151.6067 147.4952 138.4277

SOS B (-12.1432, -0.8507, —1.0758, —1.1049, - 1) (25.1165, —1.2149, —5.4326, —1.1199, - 1) (—5.4787, —1.8048, —2.3397, —2.0389, —1)
GoF  0.4247 0.9015 0.9801
% 45% 13% 15%
€90 124.0456 135.9287 102.1587

1.55UM B (—2.1265, —0.9557, —0.9984, —1.0235, —1) (34.3751, -1.0783, —5.2458, —1.0619, —-1) (-0.6651, —1.3869, —1.5549, —1.5790, —1)
GoF  0.5106 0.8044 0.9485
% 77% 1% 22%
€90 124.3694 139.4734 95.54551

kC B (-0.3095, —0.9816, —1.0017, —1.009643, —1) (2.1980, —0.8680, —0.9950, —3.4086, —1) (-0.6929, —1.0211, —1.0606, —1.0666, —1)
GoF  0.5275 0.6525 0.8835
% 80% 10% 74%
€90 123.0891 145.6142 120.8033

AkC B (-7.2126, -0.9981, —1.2345, —0.9988, —1) (-1.7307, -0.9801, —1.0396, —1.0121, - 1) (0.1128, —0.9847, —1.0149, —-1.0013, - 1)
GoF  0.8785 0.9933 0.9981
% 57% 77% 80%
€90 105.7586 120.4785 121.9634

MED B (—8.4437,-1.0328, -1.1891, —0.9958, —1) (-3.0605, —0.9660 — 1.0175, —1.0366, —1) (—1.7471, -0.9713, —0.9881, —1.0144, - 1)
GoF  0.9011 0.9921 0.9980
% 58% 76% 79%
€90 105.9371 123.0289 123.8959

lis 1%} 4}

SUM E (0.5934, —1.0202, —1.0588, —1.0264, —1) (0.6616, —1.0203, —1.0584, —1.0270, —1) (0.9775, —1.0098, —1.0563, —1.0343, —1)
GoF  0.7489 0.8006 0.8418
% 80% 80% 78%
€90 119.4431 119.5293 120.6788

MAX B (120.6153, —1.4207, —5.5268, —0.7782, —1) (—54.3395, —2.3207, —6.0411, —3.4977, -1)  (—54.3395, —2.3207, —6.0411, —3.4977, -1)
GoF  0.8267 0.8384 0.8643
% 7% 12% 12%
€gp 147.4952 138.4277 138.4277

SOS E (—14.4853, 1.5436, 4.4201, 1.5950, 1) (—0.3904, 1.7361, 2.9264, 2.0617, 1) (4.7620, 1.9721, 2.5444, 2.0415, 1)
GoF  0.9022 0.9272 0.9514
% 13% 10% 12%
€90 131.3351 114.7621 106.4697

1.55UM B (15.7120, —1.1641, —2.6186, —1.8366, —1) (—0.8627, —1.4497, —1.6239, —1.9098, —1) (—0.6434, —1.4056, —1.5798, —1.5348, —1)
GoF  0.8079 0.8565 0.8965
% 21% 22% 20%
€90 114.939 97.67539 97.29497

kC B (-1.0976, —1.0234, —1.0643, —1.0656, —1) (—1.0942, —1.0234, —1.0641, —1.0656, —1) (-0.7613, -1.0216, —1.0617, —1.0665, —1)
GoF  0.7053 0.7661 0.8144
% 74% 74% 74%
€90 120.25 120.262 120.6901

AkC B (0.8072, -0.9319, —1.1111, —1.0901, —1) (-1.5573, -0.9672, —0.9991, —1.0184, —1) (2.4443, -1.0165, —0.9923, —-1.0147, -1)
GoF  0.9929 0.9954 0.9930
% 64% 77% 82%
€90 124.0139 123.7847 123.5452

MED B (-0.6735, -0.9887, —1.0180, —0.9497, —1) (0.4156, —0.9995, —1.0147, —1.0116, —1) (-1.1572,-0.9753, —1.0309, —0.9853, —1)
GoF  0.9945 0.9949 0.9964
% 75% 81% 78%
€90 118.3319 121.9701 120.0091
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